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Abstract

In this thesis we introduce the rapidly developing study of generalised global symmetry,
a profound expansion of our ordinary notion of symmetry that provides a powerful
new way to study Quantum Field Theories (QFTs). We focus our attention to Higher-
form Symmetry, or p-form symmetry, in both the continuous and discrete cases, the
latter of which being of particular emphasis. We provide examples of higher-form
symmetry in well-known theories, as well as some more unfamiliar cases such as BF
Theory. A main property of higher-form symmetries that we study in this thesis is
their anomalies, particularly the ’t Hooft anomalies that arise from the obstruction
to gauging these symmetries. After our introduction to generalised symmetry, we
turn to the geometric engineering of QFTs from string theory and M-theory, and
demonstrate how we can use methods from algebraic topology and homological algebra
to determine the generalised symmetries that are present in the resulting QFT. We
consider how non-commutativity of the background fluxes in the string theory force us
to consider only subgroups of the possible symmetry, and that these choices correspond
to selecting global structures for the theory. Finally, we give a brief consideration of
how the Symmetry TFT ties together many of the concepts introduced throughout
the thesis.
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Chapter 1
Introduction

In this thesis, we introduce the notion of generalised symmetry, which has seen a great
amount of attention since the seminal paper of Gaiotto, Kapustin, Seiberg, and Willett
[24]. In particular, we focus on higher-form symmetries, or p-form symmetries, in both the
continuous and discrete cases. We emphasise the anomalies of these symmetries, and the
defects on which these symmetries act. After our introduction of higher-form symmetries1,
we turn to the geometric engineering of Quantum Field Theories (QFTs), which allows us
to use string theories to study the properties of QFTs when gravity decouples. A main
aim of the thesis is to show how we can study the higher-form symmetries of QFTs merely
by considering the topology of the extra dimensions of the string theory in the geometric
engineering setup. In particular, we see how the topology allows us to determine what
possible higher-form symmetries are present in the resulting QFT, and by considering
the non-commutativity of the string fluxes in the presence of torsional homology, we see
how to decide exactly which symmetries are allowed in the theory once we give it a
global structure. The plan of the thesis is as follows: In Chapter 1, we introduce the
language of ordinary symmetries that allows us to easily progress to generalised symmetry
in Chapter 2, as well as introducing the required topics in algebraic topology and algebraic
geometry that we will need for our discussions of geometric engineering in Chapter 3. In
Chapter 2, we begin our discussion of higher-form symmetries of QFTs , giving illustrative
examples as well as important general properties of higher-form symmetries. We introduce
continuous higher-form symmetries first, and then move to the less familiar discrete higher-
form symmetries. In Chapter 3, we introduce the main ideas and techniques of geometric
engineering, and then move on to discussing how we can study higher-form symmetries
from a geometric engineering perspective. The final section of Chapter 3 is devoted to flux
non-commutativity, where we take quantum effects into account to find which higher-form
symmetries can be simultaneously realised in a given QFT. In Chapter 4, we study the

1Different types of generalised symmetry were proposed in [24], of which higher-form symmetries are
the most familiar to those unacquainted with generalised symmetry, which is why we focus only on these
in this thesis.
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1.1. Ordinary Symmetries

anomalies of gauge theories and their connection to global structures, as well as giving
an introduction to Symmetry TFTs. We assume a mathematical knowledge of differential
forms, differential geometry, and basic abstract algebra (such as groups and rings), and a
physics knowledge of supersymmetric and conformal quantum field theories, and bosonic
string theory, to the level of an advanced Masters’ course2.

1.1 Ordinary Symmetries

The aim of this section is to briefly introduce some notation and conventions regarding our
ordinary notion of symmetry in a way that will make it simple to introduce generalised
symmetry. We will use differential form notation to simplify our discussions.

When we have a global symmetry in physics, by Noether’s theorem we know that there is
a conserved (1-form) current of the form

jµ ↔ j1 such that ∂µj
µ = 0 ↔ d ∗ j1 = 0 (1.1)

This 1-form current arises from what is called, in the language of generalised symmetry,
a 0-form symmetry, i.e. just our usual concept of symmetry. From this current we can
obtain a conserved charge operator within a (d− 1)-dimensional surface Σd−1

Q(Σ1) =
∫

Σd−1
∗j1 (1.2)

which is the generator of our symmetry. A visual way of representing this is the following:
let O(x) be some operator that is charged under our symmetry, then Q(Σd−1) measures
the total charge inside the surface Σd−1:

Σd−1
O(x)

If we exponentiate the charge operator we get our symmetry operator

Ug(Σ1) = e
iα

∫
Σd−1

∗j1 (1.3)
2Such as the MSc in Particles, Strings, and Cosmology, perhaps.
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1.2. Relative Homology, Tor and Ext

where g = eiα ∈ G, the symmetry group [13]. Here, G could be some potentially non-
abelian group, with α = αjT j . It is known already for 0-form symmetries that, so long as
we don’t cross operator insertions, we can smoothly deform Σd−1 and so these symmetry
operators are topological.

We will see in the next chapter how we can introduce the notion of p-form symmetries,
and that they extend very naturally from the language of symmetry in this section.

1.2 Relative Homology, Tor and Ext

For our discussion of geometric engineering, we will need to introduce some concepts from
algebraic topology. In particular, the homology of non-compact spaces will be crucial, as
well as homology groups with torsion.

Given a collection of abelian groups An and homomorphisms hn : An → An−1, we can
write a sequence as

. . . → An+1
hn+1−−−→ An

hn−→ An−1 → . . . (1.4)

If we have that Ker(hn) = Im(hn+1) for all hn then we say that this is a (long) exact
sequence. If we have an exact sequence of the form

0 → A
h−→ B

g−→ C → 0 (1.5)

where h is injective and g is surjective, then we call this a short exact sequence [29].
A useful property of short exact sequences, or more generally the end of a long exact
sequence, is that we have

C ∼= B/A (1.6)

as if h allows us to view A as a subgroup of B, but any b ∈ B s.t b = h(a) for a ∈ A

will have g(b) = 0, while for b that cannot be written in this way we have a mapping to
non-trivial elements of C. Another useful exact sequence is

0 → A → B → 0 (1.7)

where we have that this is exact iff A ∼= B [29].

If we have an exact sequence with Im(hn+1) ⊂ Ker(hn), then we have hn ◦ hn+1 = 0,
which forms a chain complex [29]. This naturally allows us to define the nth homology
group of the chain complex

Hn = Ker(hn)/Im(hn+1) (1.8)
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1.2. Relative Homology, Tor and Ext

Of interest to us is the homology of manifolds, and so we define Ck to be the k-dimensional
submanifolds, k-chains, of an orientable, closed d-dimensional manifold Md, and bound-
ary maps ∂k+1 : Ck+1 → Ck with the property ∂k ◦ ∂k+1 = 0. If ∂kSk = 0 for Sk ∈ Ck, we
call Sk a k-cycle. Then, we can define the kth homology group of Md as

Hk(Md,Z) = Ker(∂k)/Im(∂k+1) (1.9)

where the Z in this definition denotes that the homology group is defined with additive
group operation, with integer coefficients [44]. Said plainly, the kth homology group is
the group of k-dimensional submanifolds without boundary, that are not the boundary of
some (k + 1)-dimensional submanifold.

We note some useful properties of the homology groups now [44]:

• A class [Sk] ∈ Hk(Md,Z) is the space of submanifolds that differ by a boundary, i.e.
Sk ∼ Sk + ∂k+1Sk+1

• We define the Betti numbers bk = dimHk(Md,R). We have that the Euler Charac-
teristic is χ(Md) = Σd

k=0(−1)kbk.

• H0(Md,Z) = Z, Hd(Md,Z) = Z

• The Künneth formula relates the homology groups of product manifolds M ×M ′,
where we assume that M is torsion-free for simplicity (as we always assume that this
is the case in this thesis):

Hk(M ×M ′,Z) =
⊕

i+j=k

Hi(M,Z) ⊗Hj(M ′,Z) (1.10)

We can also define the de Rham cohomology groups as the differential forms that are
closed but not exact [40]:

Hk(Md) = Ker(dk)/Im(dk+1) (1.11)

where we denote in a verbose way dk as the exterior derivative acting on k-forms. Note
that we use a superscript for cohomology and a subscript for homology.

A useful connection between the de Rham cohomology and homology exists, known as
Poincaré Duality [44]:

Hk(Md) ∼= Hd−k(Md,Z) (1.12)

which allows us to take integration of a k-form on a k-cycle to integration on the entire
manifold; let PD[αk] ≡ Sd−k where αk ∈ Hk(Md) is a k-form with Poincaré dual Sd−k ∈
Hd−k(Md,Z), such that ∫

Sd−k

βd−k =
∫

Md

αk ∧ βd−k (1.13)
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1.2. Relative Homology, Tor and Ext

for all (d− k)-forms βd−k ∈ Hd−k(Md).

We now move onto the two most important aspects of homology for this thesis: Relative
Homology, and Torsion. We can decompose

Hk(Md,Z) = Zbk ⊕p Zp (1.14)

where the sum of Zp’s is called the torsion [44]. We usually denote this as TorHk(Md,Z),
but this is not to be confused with the Tor functor which we introduce shortly. Not all
manifolds exhibit torsion, but we will see later that torsional homology in geometric engin-
eering setups leads to discrete p-form symmetries in QFTs and so we will necessarily need
to include torsion in our geometric engineering setups if we wish to see these symmetries
arise. If we are considering torsion in cohomology, it is slightly different; let’s denote
Hk(Md,Z) = Zbk ⊕ Tk, where Tk is the torsion. Then we have

Hk(Md) = Zbk ⊕ Tk−1 (1.15)

i.e., the non-torsional sector of the homology and cohomology groups are the same, but
not the torsional sector [44].

We will sometimes write all of the homology groups in a condensed way

H•(Md,Z) = {H0(Md,Z), ...,Hd(Md,Z)} (1.16)

and similar for cohomology.

Now we discuss relative homology. In geometric engineering, we wish to consider string the-
ories or M-Theory with non-compact extra dimensions, and so we need to equip ourselves
with a notion of homology that applies to these spaces. Let Md be an orientable, non-
compact manifold with boundary ∂Md. Then we can loosen our notion of homology
slightly, to allow for k-cycles Sk ∈ Ck such that ∂kSk ⊂ ∂Md instead of the stricter condi-
tion ∂kSk = 0. We call these relative k-cycles: k-chains whose boundary lies only along
the boundary of the manifold, and denote the space of relative k-cycles as C∂

k . Note that
our ordinary notion of k-cycles are also relative k-cycles; their boundary is the empty set,
which is technically contained within the set of points of the boundary ∂Md. Then, we
define the kth relative homology group as [44]

Hk(Md, ∂Md) = C∂
k /Im∂k+1 (1.17)

which has the properties [44]

Hk(Md,Z) ⊂ Hk(Md, ∂Md) (1.18)

H0(Md, ∂Md) = 0 (1.19)
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1.2. Relative Homology, Tor and Ext

There exists an exact sequence [29]

. . . → Hk(∂Md,Z) → Hk(Md,Z) → Hk(Md, ∂Md) → Hk−1(∂Md,Z) → . . . (1.20)

where we have suppressed the particular homomorphisms that give this sequence. We
can see that this is iterative; the ellipses on the right will be the same sequence, just
with k reduced by 1. Thus, if we assume that the sequence terminates at the end i.e.,
Hk−1(Md) = 0, then we can use the following property, using Equation 1.6

Hk−1(∂Md,Z) = Hk(Md, ∂Md)/Hk(Md,Z) (1.21)

This equation will end up being of great importance to us later, allowing us to simplify
homological computations in the geometric engineering of higher-form symmetries.

We now introduce some useful functors from homological algebra that will be helpful for
us in this thesis, namely Tor and Ext. These are called derived functors, for reasons
we won’t explain in this thesis. In fact, our discussion of Tor and Ext will illuminate very
little of the purpose of these functors in homological algebra, but we simply need them
as a tool to utilise some theorems that are of use to us. A proper introduction to these
functors, and homological algebra in general, can be found in [46, 39].

Instead of stating what these two functors are by definition, we will simply give their
properties for abelian groups. First, we have the following properties of Tor functor for
(non-trivial) abelian groups A,B [46]:

• A is torsion free ⇔ Tor(A,B) = 0 ⇔ Tor(B,A) = 0

• Tor(Zn, B) =n B = {b ∈ B|nb = 0}

• Tor(Zb ⊕i Zni , B) = ⊕i Tor(Zni , B)

We note that what we are calling Tor should actually be written as TorZ1 , and that this
is just one of the possible Tor functors, but this is all we will need in this thesis.

Next, we state some properties of the Ext functor for abelian groups A,B, as well as a
useful application to short exact sequences [39]:

Ext(Zn, B) = B

nB
(1.22)

Ext(Z, B) = 0 (1.23)

and then if we have a short exact sequence

0 → B → C → A → 0 (1.24)
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1.3. Toric Varieties

then C = A⊕B, i.e. the sequence splits, if Ext(A,B) = 0 [46]. If Ext(A,B) ̸= 0, then we
have that this is measuring all of the possible ’equivalence classes’3 of possible C, with the
zero element of Ext(A,B) being the split sequence [46]. Again, what we are calling Ext
should actually be written as Ext1Z, but as before we will only need this functor instead
of other possible Ext functors and so refer to it as Ext.

1.3 Toric Varieties

As well as the algebraic topology in the previous section, we must also give an introduction
to some algebraic geometry. The previous section introduced relative homology and torsion
of a general non-compact manifold with boundary, Md, and the aim of this section is to
introduce the language we need to give examples of Md. We will be considering singular
toric Calabi-Yau 3-folds, and the methods used to extract the homological data from these
3-folds using toric diagrams.

Denote the polynomial ring over a field F as F[z1, ..., zn]. This is just the ring of
polynomials in variables z1, ..., zn with coefficients in F. We will quickly specify our field
to be C, as this is the only field we will be considering in this thesis. We can then define
an n-dimensional ideal of polynomials of S for S ⊆ Cn as the following [28]

I(S) = {f ∈ C[z1, ..., zn] | f(s) = 0 ∀s ∈ S} (1.25)

Put simply, I(S) is just the set of all polynomials that are zero for all points in some
subset S of the complex plane Cn. It is clear to see that I(Cn) = {0}, as no non-trivial
polynomial can be zero at every point in the entire complex plane [28]. Another simple
example is S = {(z1, 0) | z1 ∈ C}, which has

I(S) = C[z2] (1.26)

Next, we can define an affine variety of an ideal I ⊂ C[z1, ..., zn] as [17]

V (I) = {s ∈ Cn | f(s) = 0 ∀f ∈ I} (1.27)

We do not have, however, that V (I(S)) = S. Using an example I(S) from [28], let
S = {z ∈ C | |z|2 = 1, Re(z) ̸= 0}, i.e. a circle without the north and sound pole. Then,
the ideal for S is

I(S) = ⟨|z|2 − 1⟩ (1.28)

i.e. the polynomials in z generated by the term in the angular brackets. If we take this
ideal, then the corresponding affine variety is

V (I(S)) = {z ∈ C | |z|2 = 1} (1.29)
3See [46] for more on group extensions and Ext.
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1.3. Toric Varieties

which is now the whole circle, including the north and south poles. From this we can see
that V (I(S)) ̸= S in general.

Now we are in a position to begin defining some toric varieties. We define the n-dimensional
algebraic torus (C∗)n as [17]

(C∗)n := Cn \ V ({z1...zn}) (1.30)

where the affine variety V is essentially removing all of the coordinate axes from the
complex n-plane such that we are left only with the ’quadrants’.

Then, we can define an n-dimensional toric variety as [41]

XΣ = (CN \FΣ)/(C∗)m (1.31)

where m < N,n = N −m. The m-dim algebraic torus acts by coordinate multiplication,
and FΣ are the set of points left invariant by the torus action, and thus must be removed.

We can encode the variety XΣ by a lattice N isomorphic to Zn and its fan Σ. Before we
discuss this any further, we must explain what we mean by a fan.

Firstly, a k-dimensional strongly convex rational polyhedral cone σ ⊂ N ⊗ R is a
set [32]

σ = {a1v1 + ...+ akvk | ai ≥ 0, ai ∈ R} (1.32)

such that σ ∩ (−σ) = {0}, where we say that σ is generated by the vectors {vi}. The
generating vectors have integer coordinates, and span a subspace of the lattice N . We
will refer to r-dimensional subsets of σ as r-dimensional faces of the cone generated
by some r-dimensional subset of the generating vectors of σ, such that the faces are also
r-dimensional cones. An intersection of two faces is also a face of σ, as is the face of a face
[17].

Now, we define a fan Σ as a collection of strongly convex rational polyhedral cones such
that each face of a cone in Σ is also in Σ, and the intersection of two cones in Σ is a
face of each cone [32]. We can write the fan Σ in terms of the generators of the one-
dimensional cones {vi}, of which there are n, and the d-dimensional cones in Σ correspond
to codimension-d cycles in XΣ [41].

As mentioned at the beginning of this section, we are interested in singular toric Calabi-
Yau 3-folds, which means we are looking for toric varieties with 3 generating vectors vi.
To ensure that our varieties are Calabi-Yau, this corresponds to having these vi all lying
in the same hyperplane, one unit away from the origin of the lattice N , and so we can set,
for instance, the third component of each vi to 1:

(vi)3 = 1 (1.33)
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1.3. Toric Varieties

This means that we can identify the toric Calabi-Yau in question by drawing the vi vectors
in a plane [41].
Now, we will step away from toric varieties for just a second to discuss orbifolds. We
define an orbifold as the quotient of a manifold M by a discrete group Γ [41]:

X = M/Γ (1.34)

Of interest to us are the orbifolds with M = Cn and Γ = Zp. To be clear, we intend to use
orbifolds exactly of this kind as our extra dimensions in our geometric engineering setups.
For n = 3, we will show that orbifolds of this type happen to be singular toric Calabi-Yau
3-folds.

A rational polyhedral cone is simplicial if its generating vectors vi form a basis for the
vector space that they span, i.e. if they are linearly independent. A fan Σ is simplicial
if each cone in Σ is simplicial. A toric variety is an orbifold iff its fan is simplicial [32].
Therefore, to ensure that we obtain an orbifold, we require the generating vi of our toric
variety XΣ above to be linearly independent such that all the faces in Σ will also be
simplicial, thus giving that Σ is simplicial and XΣ is an orbifold. We will show now
how picking different linearly independent vi corresponds to picking different orbifolds
XΣ = C3/Zp.

On XΣ we can pick local coordinates

ui = z
(v1)i

1 z
(v2)i

2 z
(v3)i

3 (1.35)

where the action of the group (C∗)m on the vi is given by
3∑

i=1
l
(a)
i vi, a = 1, ...,m, l(a)

i ∈ Z (1.36)

such that ui is invariant under this action [41].

Then, we consider how the discrete group of an orbifold acts on its coordinates. Generally,
for discrete group Zp, we have the coordinates transform as

(z1, z2, z3) → (ϵn1z1, ϵ
n2z2, ϵ

n3z3) (1.37)

where ϵ = e
2πi

p ∈ Zp such that ϵp = 1 [41]. The values of ni must obey specific relations
to ensure that the resulting orbifold is Calabi-Yau, this being [41]

n1 + n2 + n3 = 0 mod p (1.38)

We should note that this does not necessarily give a unique ni triple - in fact, Z6,Z8,Z12

each have two different ways of acting, and a full table of the allowed Zp and their corres-
ponding ni triple can be found in [41]. For us, we will simply quote these ni triples as we
need them. By convention, one sets n1 = 1 such that we only need to find n2, n3.
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1.3. Toric Varieties

To see how we can find which orbifold XΣ corresponds to, we can consider how they act
on the ui coordinates by acting on the zi coordinates with these orbifold actions and insist
that they are invariant [41]

ui → ϵ(v1)iϵn2(v2)iϵn3(v3)iui != ui ⇒ (v1)i + n2(v2)i + n3(v3)i = 0 mod p (1.39)

Thus, with the Calabi-Yau condition also setting (vj)3 = 1 ∀ j, we have that for a given
Zp (and thus fixed values of ni), all we must do to ensure that XΣ is the C3/Zp orbifold
is to solve these two remaining equations for linearly independent vi, which gives us a
simplicial fan Σ.

Once we have fixed vi, we can draw the toric diagram of the orbifold by drawing these
vectors on a 2-dimensional integer lattice.

As an example, consider C3/Z3. From [41], we have that (n1, n2, n3) = (1, 1,−2), and so
we must solve the equations

(v1)1 + (v2)1 − 2(v3)1 = 0 mod 3 (1.40)

(v1)2 + (v2)2 − 2(v3)2 = 0 mod 3 (1.41)

such that vi are all linearly independent. One possible way of writing this is

v1 =


1
0
1

 , v2 =


0
1
1

 , v3 =


−1
−1
1

 (1.42)

as we can see that these are linearly independent and satisfy the above equations. Drawing
these vectors in the z1, z2 hyperplane, along with the origin point gives the toric diagram
of C3/Z3:

v3

v1

v2

where the point in the middle of this diagram is the origin. As the vi are 1-dimensional
cones, we can make three 2-dimensional cones by connecting these points together (the
lines in the toric diagram). The 3-dimensional cone is then given by connecting these three
lines together. We can see that C3/Z3 actually looks like a cone4 by visualising what this
would look like in 3-dimensions:

4Rather, an upside down, infinitely tall tetrahedron.
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1.3. Toric Varieties

v3 v1

v2

where the dotted lines are showing us that this cone extends off to infinity.

In general, we can compute the homology groups from the toric diagram of our C3/Zp

orbifolds. However, as the varieties we have considered so far are singular (due to the
singularity at the tip of the cone), one would need to be careful about how to define
homology on such spaces. Something we can do instead is to find a crepant resolution
XΣ̃ that smooths the space such that we can talk about its homology without issue. We
won’t discuss the specifics of how we do this, as the homological data for the crepant
resolution is still obtained by the initial toric diagram, but the idea is this: given the toric
diagram, we triangulate the diagram by connecting interior points to exterior points, and
this corresponds to some smoothed version of the orbifold. Again, this isn’t something
we intend to do explicitly, but is something we must take into account - in our geometric
engineering setups we will be taking some crepant resolution of our singular variety to be
the extra dimensions, but the important information that we need for our constructions
comes from the toric diagram only.

To obtain the homology our variety, let I be the number of points inside the toric diagram
corresponding to Σ (the fan of the singular toric variety), and B the number of points on
the edge of the diagram. Then we have that I counts the number of complex codimension-
1 cycles (i.e., real dimension 4 cycles), and it can be shown that the number of 2-cycles
is I + B − 3, and we have that there are no non-trivial odd-dimensional cycles for toric
varieties [3]. Note that this means for toric varieties we can use Equation 1.21. Therefore,
we can write the homology groups of the crepant resolution of the variety XΣ̃ as

H•(XΣ̃,Z) = {Z, 0,ZI+B−3, 0,ZI , 0, 0} (1.43)

For example, if we consider the toric diagram of C3/Z3 that we gave above, then we have
I = 1,B = 3, so the homology of the crepant resolution, call it C̃3/Z3, is then

H•(C̃3/Z3,Z) = {Z, 0,Z, 0,Z, 0, 0} (1.44)

Currently, away from the singularity this manifold is locally of the form C3, i.e. just flat
space, and thus has no boundary. To provide this space with a boundary, we can simply
consider placing a 6-dimensional ball at infinity of the crepant resolution, and call this
manifold with boundary X6. This will give us a boundary of the form [3]

∂X6 = S5/Zp (1.45)
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Chapter 2
Higher-Form Symmetry

In this chapter we aim to give a detailed introduction to higher-form symmetries, some-
times called p-form global symmetries. The first section will introduce the general proper-
ties of these symmetries in the continuous case, as well as giving some examples. We will
also introduce discrete higher-form symmetries, which will perhaps feel less familiar than
their continuous counterpart, but are thus a more interesting case to consider. In par-
ticular, it has been predicted that the standard model exhibits such discrete symmetries,
which leads to some interesting predictions such as the existence of fractionally charged
hadrons [5]. Another main focus for us is to shed light on what these symmetries act on
- a 0-form symmetry acts on 0-dimensional operators, i.e. points. So, a p-form symmetry
acts on p-dimensional operators, which we call defects. Some standard references for
introductions to higher-form symmetries are [13, 10, 42].

2.1 Continuous Higher-form Symmetries

In Section 1.1, we considered how a 0-form symmetry gives rise to a 1-form conserved
current, and how we were able to create a symmetry operator from the associated conserved
charge. This charge was defined over a (d−1)-dimensional surface, and could thus surround
a 0-dimensional operator.

Now suppose that we have some conserved (p+1)-form current jp+1 such that d∗jp+1 = 0.
What would this mean for us? Well, in the same way a conserved 1-form current gives us
a 0-form symmetry, a conserved (p + 1)-form current would imply the existence of some
p-form symmetry. Consider then what the associated charge operator would be:

Q(Σd−p−1) =
∫

Σd−p−1
∗jp+1 (2.1)

where Σd−p−1 is some (d − p − 1)-dimensional surface, and from this we could construct

12



2.1. Continuous Higher-form Symmetries

a symmetry operator
Ug(Σd−p−1) = e

iα
∫

Σd−p−1
∗jp+1 (2.2)

where again g = eiα ∈ G(p) is the symmetry group. Notice now that we are referring to the
p-form symmetry group as G(p)5. In Section 1.1, we said that the 0-form symmetry group
could potentially be non-abelian, but for higher-form symmetries, G(p) must always be
abelian. In [13] there is a way of visualising this by considering a diagram of the following
form:

Σd−p−1

Σ̃d−p−1

Op

Σd−p−1

Σ̃d−p−1

Op

Recall that a 0-form symmetry acts on 0-dimensional operators, but a p-form symmetry
acts on p-dimensional operators called defects, e.g. for p=1 we have that the 1-form
symmetry acts on lines. The dimensionality of the defects and the topological nature of
the symmetry operators means that the surfaces Σd−p−1, Σ̃d−p−1 have room to exchange
positions without crossing each other, and thus the symmetry operators commute. Thus,
G(p) is always abelian, and therefore [3]

G(p) ⊆ U(1)N (2.3)

for some N . So the fact that G(p) is always abelian means we have

Ug Ug′ = Ugg′ = Ug′g = Ug′ Ug (2.4)

or explicitly,
eiαQ(Σ)eiα′Q(Σ) = ei(α+α′)Q(Σ) (2.5)

as expected for an abelian symmetry. It’s clear to see that setting g′ = g−1 in the equations
above would result in the identity operator on the right-hand side, and so we see that G(p)

is in fact a group6.
5This is sometimes referred to as Córdova-Dumitrescu-Intriligator notation.
6We note that G(p) can be some more general algebraic structure without inverse, i.e. when ∄ g′ = g−1.

These are called non-invertible symmetries, and we will not discuss these in this thesis, but see [43, 42, 13].
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2.1. Continuous Higher-form Symmetries

We have constructed our symmetry operators, but we have not discussed the defects yet.
As mentioned, these will be p-dimensional operators with a charge under the symmetry,
which we call q. They are defined by this charge and the p-dimensional submanifold that
they lie along:

Defect : Dq(γp) (2.6)

Their precise form is dependent on the theory, and so we will consider an example to shed
light on these defects. Our first example will be pure 4d U(1) gauge theory. First, we
should discuss how the symmetry operators act on these defects. We have the following
Ward identity [13]

d ∗ jp+1(x)Dq(γp) = qδ(d−p)(x ∈ γp)Dq(γp) (2.7)

where we define

δ(d−p)(x ∈ γp) =

1 x ∈ γp

0 x /∈ γp

(2.8)

Then, consider multiplying either side of the Ward identity by some U(1) parameter α,
taking an integral over some (d− p)-dimensional Σd−p of the action of the Ward identity
on the defect and exponentiating:

e
iα

∫
Σd−p

d∗jp+1Dq(γp) = e
iαq

∫
Σd−p

δ(d−p)

Dq(γp) (2.9)

We should consider both of these exponentials independently, and we will see an interesting
relationship between them afterwards. For the left hand side, we can let ∂Σd−p = Σd−p−1,
and then use Stoke’s theorem to obtain

e
iα

∫
Σd−p

d∗jp+1 = e
iα

∫
Σd−p−1

∗jp+1 = Ug(Σd−p−1) (2.10)

so the left hand side corresponds to the action of the symmetry operator Ug(Σd−p−1)
acting on the defect. Then, we can consider the exponential on the right hand side. The
main thing we wish to consider is what the integral is equivalent to. Once again, some
diagrams are helpful to understand physically what this integral represents. Again, let
∂Σd−p = Σd−p−1, and fix some orientation for γp [13]

γp

Σd−p−1Σd−p

14



2.1. Continuous Higher-form Symmetries

so we can see that integrating this delta function over Σd−p will be zero everywhere other
than at the red dot of the diagram - this integral will thus be equal to 1. Alternatively,
we could consider another γp

Σd−p−1Σd−p

γp

where here there would be two points in the integral that would be non-zero, but the
orientation gives them opposite sign and thus they cancel, such that the integral is zero.
There is a reason for this - consider the following digram, where we have topologically
moved7 Σd−p down below γp such that they no longer intersect

Σd−p−1Σd−p

γp

and there are no intersections at all. What we see is that adding an orientation to γp in
this integral tells us whether or not Σd−p−1 and γp ’link’ each other, i.e. whether or not
there is some way we can topologically deform Σd−p−1 such that there is no intersection.
There may, of course, be more than one intersection as well, in which case this integral
will measure this too. We call this integral the linking number Link(Σd−p−1, γp) [13].
Another way we can write this linking number is the following [14]

Link(Σd−p−1, γp) =
∫
PD[Σd−p] ∧ PD[γp] (2.11)

and it is sometimes referred to as the intersection number in this form.

Having considered both exponentials, we can write the action of the symmetry operator
on the defect as

Ug(Σd−p−1)Dq(γp) = eiαqLink(Σd−p−1,γp)Dq(γp) (2.12)
7Technically speaking, we transformed it to a homotopically equivalent surface.
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2.1. Continuous Higher-form Symmetries

Now that we have discussed both the p-form symmetry operators and defects, we can turn
to an example.

4d Maxwell Theory

Consider the usual 4d Maxwell action

S =
∫

M4
F2 ∧ ∗F2 (2.13)

where F2 = dA1, such that d2 = 0 gives dF2 = 0, the Bianchi Identity. By varying the
action, we get the equations of motion:

δS = 0 =
∫
d(δA1) ∧ ∗F2 (2.14)

= −
∫
δA1 ∧ (d ∗ F2) (2.15)

⇒ d ∗ F2 = 0 (2.16)

The equations of motion and the Bianchi identity look remarkably like the conservation
of a pair of 2-form currents:

j
(e)
2 = F2, j

(m)
2 = ∗F2 (2.17)

where the superscript is understood to mean electric current and magnetic current. Ap-
plying our newfound understanding of p-form symmetries, we can see that this implies the
existence of a pair of 1-form symmetries. We can let ∗F2 = dÃ1 (i.e. we do not assume
that F2 is self dual). Ã1 is sometimes referred to as the dual photon. Note that this is
a particular restriction, and that we don’t have to consider ∗F2 in this way - however, it
allows us to see clearly what our symmetries are. A natural way to see these symmetries
is by the shifts

A1 → A1 + λ1, Ã1 → Ã1 + λ̃1 (2.18)

where λ1, λ̃1 are two constant 1-forms. These shifts leave the action invariant, and so they
are clearly 1-form symmetries. The symmetry of A1 is sometimes referred to as the 1-form
electric symmetry, and for Ã1 the 1-form magnetic symmetry. The corresponding
symmetry operators are

U (e)
g (Σ2) = e

iα
∫

Σ2
∗F2 (2.19)

U (m)
g (Σ̃2) = e

iα
∫

Σ̃2
F2 (2.20)

and so all that is left to do is work out what the defects are. For our Maxwell theory,
these defects are [13]

D(e)
q (γ1) = e

iq
∫

γ1
A1 (2.21)

D(m)
q (γ̃1) = e

iq
∫

γ̃1
Ã1 (2.22)
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2.1. Continuous Higher-form Symmetries

We will discuss soon why the defects take this form. The electric defect, in this example, is
called a Wilson Line, and the magnetic defect an ’t Hooft Line. We have already seen
generally how our symmetry operators will act on these defects from Equation 2.12, so
we won’t restate this, but note that D(e)

q (γ1) is charged only under the electric symmetry,
and the same for the magnetic defect and the magnetic symmetry.

The physical interpretation of these defects are ’infinitely massive’8 electric and magnetic
monopoles with worldline given by the line γ1 that defines them [10]. So, keeping in mind
that these are actual physical objects in the theory, we should insert the defects into the
path integral of the theory to see how they may affect the theory

⟨D(e)
q (γ1)⟩ =

∫
DA1DÃ1e

i
∫

M4
F2∧∗F2

e
iq

∫
γ1

A1 (2.23)

=
∫
DA1DÃ1e

i
∫

M4
F2∧∗F2+qA1∧δ(3)(γ1) (2.24)

such that the Equation of motion for A1 becomes

d ∗ F2 = qδ(3)(γ1) (2.25)

and similar for inserting the ’t Hooft line in the path integral. Therefore, we see that the
equations of motion are actually affected by the presence of these defects in the theory.
This equation of motion also serves as another way to derive the action of the symmetry
operator on the defect, in a similar way to how we obtained this from the Ward identity.

We know that these symmetries must be U(1) due to the symmetry arising from the shift
A1 → A1 + λ1. This then means that λ1 must be U(1)-valued. We can perhaps show this
more explicitly

D(e)
q (γ1) → e

iq
∫

γ1
A1+λ1 (2.26)

= e
iq

∫
γ1

λ1D(e)
q (γ1) (2.27)

!= eiqαLink(Σ2,γ1)D(e)
q (γ1) (2.28)

⇒ αLink(Σ2, γ1) =
∫

γ1
λ1 (2.29)

where α is a U(1) parameter, i.e. α ∈ U(1) and the linking number is just an integer, so
αLink(Σ2, γ1) ∈ U(1) also. Therefore,∫

γ1
λ1 ∈ U(1) (2.30)

Not only does this tell us that the symmetry is in fact U(1), it also demonstrates why
we picked the form of D(e)

q (γ1) - this defect transforms in the correct way under the 1-
form symmetry, and so this is the suitably charged operator of the symmetry. The same
argument also applies to the magnetic defect, and so the symmetry group of this Maxwell
theory is G(1) = U(1) × U(1).

8A better way of thinking about this might be that their masses are very heavy compared to everything
else in the theory.
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2.1. Continuous Higher-form Symmetries

Defect Group

We are now finished with our example, which has allowed us to demonstrate many of the
concepts of higher-form symmetries. There are just a few more properties of higher-form
symmetries that we wish to discuss before moving on.

Suppose we have a p-form symmetry group G(p), which we know to be abelian. We would
like to know what the possible charges are for the defects, i.e. what values of q can the
defects have. Define the Pontryagin Dual Group of G(p) as [10]

Ĝ(p) = {ϕ : G(p) → U(1) | ϕ a homomorphism} (2.31)

In the language of homological algebra, this would be written as

Ĝ(p) = Hom(G(p), U(1)) (2.32)

Consider the example G(p) = U(1): how can we map from U(1) to U(1)? We could do
nothing, we could square the element, cube it - all will leave us still in U(1). More generally,
we could map g 7→ gn for n ∈ Z. So, it turns out that the group of all homomorphisms
from U(1) to U(1) correspond to the group of integers under addition [10]

Û(1) = Z (2.33)

and so if we have the most general form, G(p) = U(1)N , then

Ĝ(p) = ZN (2.34)

One might ask how the Pontryagin dual relates to the charges of the defects. Let’s view
Equation 2.12 in the following way: let ϕq : U(1) → U(1) : eiα 7→ eiαq; we can see that
this is how the U(1) symmetry operators act on the defects, and so this must mean that
for G(p) = U(1), q ∈ Z. Then, for G(p) = U(1)N , Ĝ(p) = ZN . So for all continuous
p-form symmetries, the corresponding defects have integer charge. Note that this is the
case for continuous p-form symmetries - we will see how this changes for discrete p-form
symmetries in the next section.

We can put our argument for the Pontryagin dual in reverse also, and consider, for Pontry-
agin dual group Ĝ(p), what is the corresponding G(p)? It turns out that [10]

̂̂
G(p) = G(p) (2.35)

which is easy to see by considering the maps ϕα : Z → U(1) instead, for α ∈ U(1). Thus,
when discussing higher-form symmetries we can talk about the symmetry group G(p) or
the defect group Ĝ(p) interchangeably, as is often done in the literature. See [43] for
more on this correspondence.
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2.1. Continuous Higher-form Symmetries

So far, we have only considered a single defect charged under a given higher-form sym-
metry. But as we have seen, the charges of defects form a group, and so we can have more
than one defect charged under the symmetry. We want to see how these different defects
behave around each other, and how they are related.

Consider two p-dimensional defects, Dq(γp), D̃q̃(γ̃p) ∈ Ĝ(p). Suppose we have that these
defects are connected by some (p− 1)-dimensional operator Op−1, then we say the defects
screen each other [10]

Dq(γp)

D̃q̃(γ̃p)

Op−1

and this implies that they have the same charge, from the topological property of the
symmetry operators [10]:

Dq(γp)

D̃q̃(γ̃p)

Op−1

Ug(Σd−p−1)

=

Dq(γp)

D̃q̃(γ̃p)

Op−1

Ug(Σd−p−1)

such that when we shrink the size of Σd−p−1 to measure the charge of each defect on either
side of the equation, we get that q = q̃. Therefore, any defects that screen to each other
all have the same charge, and we thus say that [10]

Screening → Dq(γp) ∼ D̃q̃(γ̃p) (2.36)
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2.2. Discrete Higher-form Symmetries

such that the defect group becomes a group of equivalence classes of screenable defects
with the same charge. We call a p-dimensional defect completely screened or endable
if it can be screened to a defect with 0 charge (i.e., the p-dimensional identity operator),
and thus this defect has vanishing charge under the symmetry group [42].

We will refer to all the various p-form defect groups of a theory collectively as the defect
group, and denote it D, such that

D =
⊕

p

D(p) =
⊕

p

Ĝ(p) (2.37)

2.2 Discrete Higher-form Symmetries

Now that we have discussed continuous higher-form symmetries, we are in a position to
move to discrete higher-form symmetries, which will be a main focus of the remainder of
this thesis, especially in our geometric engineering setups. In the previous subsection, all
of our higher-form symmetry groups were of the form G(p) = U(1)N , such that these were
continuous symmetries. But suppose we picked a Zn subgroup of U(1) - this would no
longer be continuous, but a discrete p-form symmetry. One might ask if such a symmetry
is well-defined mathematically, but Dijkgraaf-Witten theory [20] provides us with the
mathematical underpinnings of such a symmetry.

There exist more mathematical introductions to discrete higher-form symmetry, but to
begin we wish to give a more intuitive understanding of how they work. First, we mention
that for U(1) gauge fields A we have

1
2π

∫
dA ∈ Z = Û(1) (2.38)

which is the Dirac quantization condition [13]. That is, the electric (or magnetic) flux
is quantized by the integers, the Pontryagin dual of the symmetry group. Then, suppose
we have a p-form symmetry group G(p) = Zn for some gauge field A - what would the
corresponding flux be? Well, it turns out that [13]

1
2π

∫
dA ∈ Zn = Ẑn (2.39)

where we have used that the Pontryagin dual of Zn is also Zn [10]. This follows quite
naturally from our previous discussion of the Pontryagin dual of U(1) - we said that the
possible homomorphisms from U(1) to U(1) were represented by the integers, correspond-
ing to squaring, cubing, etc. But now if we have the generator g ∈ Zn ⊂ U(1) such
that gn = 1, then the homomorphism ϕn will return to the identity - therefore we can
have at most n homomorphisms, corresponding to the elements of Zn. So, we know that
the fields under the discrete p-form symmetry must obey this quantization condition, and
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2.2. Discrete Higher-form Symmetries

that the corresponding charged defects will have charges k = 0, .., n− 1. Likewise, as the
symmetry group is now Zn, the group parameter of the symmetry operators will now be
Zn valued, instead of the usual α ∈ U(1). In the same way we considered G(p) = U(1)N

to be the largest possible continuous p-form symmetry group, we can also see that the
largest discrete p-form symmetry group would be [10]

G(p) =
∏

i

Zni (2.40)

for integers ni, where this product implies the usual direct product of groups.

We have gleaned a considerable understanding of discrete p-form symmetries just from con-
sidering the ramifications of the possible symmetry groups and the corresponding Pontry-
agin duals. Let us now consider the prototypical example of discrete p-form symmetries,
BF Theory.

BF Theory

Let Ap, Bd−p−1 be U(1) gauge fields, with action [13]

S = in

2π

∫
Md

Bd−p−1 ∧ Fp+1 (2.41)

where Fp+1 = dAp. The equations of motion are then

n

2πdAp = 0, n

2πdBd−p−1 = 0 (2.42)

and we can see that the action and the equations of motion are gauge invariant. As these
are two U(1) gauge fields, we have that they obey the Dirac quantization condition from
above, with integer quantization. Currently, there does not seem to be anything hinting
that this theory contains discrete higher-form symmetries - we must consider the partition
function for these to appear:

Z =
∫

[dA][dB]e
in
2π

∫
Bd−p−1∧dAp (2.43)

=
∫

[dA][dB]e2πi
∫ dAp

2π
∧

nBd−p−1
2π (2.44)

Now we only want to include those Ap whose fluxes are integers, so we sum over these

=
∑

k=
∫ dAp

2π
∈Z

∫
[dA][dB]e2knπi

∫ Bd−p−1
2π (2.45)

Next, we can use a trick from [13] - the identity∑
k∈Z

∫
dxe2knπixf(x) =

∑
x∈Zn

f(x) (2.46)
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2.2. Discrete Higher-form Symmetries

where in our path integral we take f(x) = 1, x =
∫ Bd−p−1

2π such that the path integral
becomes

Z =
∑

∫ Bd−p−1
2π

∈Zn

∫
[dB] (2.47)

i.e., only the Zn-valued gauge fields contribute to the path integral, as we can achieve
the same condition for Ap in a similar way. Therefore, the quantum theory actually only
allows for Zn gauge fields.

We can use an analogy with our U(1) Maxwell theory to consider the defects of the theory:

D(A)
q (γp) = e

iq
∫

γp
Ap (2.48)

D(B)
q (γd−p−1) = e

iq
∫

γd−p−1
Bd−p−1 (2.49)

as the Maxwell theory was also a theory of two U(1) gauge fields, and this matches the
form of the defects there. The only difference here is that now, Ĝ(p) = Zn, and so the
charge q ∈ Zn.

In our continuous case, we would have used the equations of motion to obtain conserved
currents from which we obtain the symmetry operators. However, we run into an issue
here. The ’currents’ from the equations of motion are actually just the A and B gauge
fields themselves. Also notice that the action S of BF theory contained no Hodge star,
and no explicit reference to a metric - this is a Topological Quantum Field Theory
(TQFT), as we could put a metric on Md, call it g, and vary S with respect to g.
However, we would see that δgS = 0 due to this lack of dependence of the metric. Thus,
we would usually define our current from

d ∗ j = 0 (2.50)

but in the original action we had no metric and so using the Hodge star here is ambiguous.
Furthermore, suppose we did introduce some metric, such that the above argument was
no longer an issue and we could define the currents as such. We then have, in this theory,
that the currents are not gauge invariant, and so these are in fact not really currents at
all

∗jd−p = Ap → Ap + dΛp−1 ̸= ∗jd−p (2.51)

where Λp−1 is a gauge parameter. We can show that the ’current’ associated to Bd−p−1 is
also not gauge invariant by an identical argument.

While it is not correct to refer to these as currents, they do give us some hints of the
existence of discrete higher-form symmetries. Let’s make the following transformations

Ap → Ap + λp (2.52)

Bd−p−1 → Bd−p−1 + λd−p−1 (2.53)
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2.2. Discrete Higher-form Symmetries

where the λ’s are Zn-valued global forms, and see if the action is invariant

S →S + in

2π

∫
λd−p−1 ∧ dAp +Bd−p−1 ∧ dλp︸︷︷︸

=0

+λd−p−1 ∧ dλp︸︷︷︸
=0

(2.54)

= S + in

2π

∫
dλd−p−1︸ ︷︷ ︸

=0

∧Ap (2.55)

= S (2.56)

So we see that these ’currents’ were correct in predicting a Z(p)
n × Z(d−p−1)

n symmetry. As
we also have

0 = d ∗ jd−p → d(Ap + λp) = dAp = 0 (2.57)

and similar for our jp+1 current associated to Bd−p−1, we have that we can write symmetry
operators

U (A)
g (Σp) = e

iα
∫

Σp
Ap (2.58)

U (B)
g (Σd−p−1) = e

iα
∫

Σd−p−1
Bd−p−1 (2.59)

where α ∈ Zn. Let’s put, say, U (A)
g (Σp) and D(A)

q (γp) side by side:

e
iα

∫
Σp

Ap
, e

iq
∫

γp
Ap (2.60)

These look incredibly similar to one another, and one might doubt that the former can
actually enact a symmetry transformation on the latter. This is indeed correct. Let’s
insert D(A)

q (γp) into the path integral to get a elucidate which symmetry operators are
acting on which defects:

⟨D(A)
q (γp)⟩ =

∫
[dA][dB]e

in
2π

∫
Bd−p−1∧dApe

iq
∫

γp
Ap (2.61)

=
∫

[dA][dB]e
in
2π

∫
dBd−p−1∧Ap+ 2πq

n
δ(d−p)(x∈γp)∧Ap (2.62)

such that we obtain the new equation of motion

dBd−p−1
2π = q

n
δ(d−p)(x ∈ γp) (2.63)

We can treat this as a Ward identity similar to Equation 2.7:

dBd−p−1
2π D(A)

q (γp) = q

n
δ(d−p)(x ∈ γp)D(A)

q (γp) (2.64)

and by following the same line of argument as before, we end up with the following

e
iα

∫
Σd−p−1

Bd−p−1D(A)
q (γp) = e

2πiαqLink(Σd−p−1,γp)
n D(A)

q (γp) (2.65)
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2.3. Global Structure of 4d Gauge Theories

where α ∈ Zn is our usual group parameter. Remarkably, the exponential on the left hand
side is exactly U (B)

g (Σd−p−1)! So what we have found is that

U (B)
g (Σd−p−1)D(A)

q (γp) = e
2πiαqLink(Σ,γp)

n D(A)
q (γp) (2.66)

and by a similar argument

U (A)
g (Σp)D(B)

q (γd−p−1) = e
2πiαqLink(Σ,γd−p−1)

n D(B)
q (γd−p−1) (2.67)

i.e. the symmetry operator from the current of Ap actually generates the Z(d−p−1)
n sym-

metry, similar for Bd−p−1 and the Z(p)
n symmetry. The fact that there is some correspond-

ence between U (A)
g and D(B)

q (and vice versa) means that we can notice an interesting fact
about the defects of BF theory - they do not necessarily commute. By picking g = e

2πiq
n

such that U (B)
g (Σd−p−1) = e

iq
∫

Σd−p−1
Bd−p−1 = D(B)

q (Σd−p−1), then we can see this non-
commutativity from considering Equation 2.66

D(B)
q (Σd−p−1)D(A)

q̃ (γp) = e
2πiqq̃Link(Σ,γ)

n D(A)
q̃ (γp)D(B)

q (Σd−p−1) (2.68)

Here we note that in Equation 2.66 the symmetry operator no longer appears on the right
hand side - this is a convention that we have chosen; a different convention is used in [13]
that would make this more apparent. This non-commutativity of the defects will turn out
to be an essential feature of BF theory, as we will see later.

2.3 Global Structure of 4d Gauge Theories

So far, we have only considered higher-form symmetries of abelian gauge theories, and this
makes sense as it’s somewhat easier to introduce abelian symmetries (as all higher-form
symmetries are) into abelian theories. However, non-abelian gauge theories can also enjoy
higher-form symmetries. This will be the topic of this subsection, through the lens of
different gauge theories with the same Lie algebra. Much of what we discuss in this sub-
section is simply the authors attempt at making the content of [2] more digestible for those
whose knowledge of representations of Lie algebras extends only to a basic understanding
of roots and weights.

Consider a theory Tg(G), i.e. the gauge theory with gauge group G, and some other theory
Tg(G̃), where G and G̃ have the same Lie algebra g. To avoid being too abstract, we will
think of a theory Tg(G) as a partition function. In this thesis, we will mostly concern
ourselves with the case g = su(n), but in general will assume g is at least semi-simple.
The simple Lie algebras are [10]

g ∈ {su(n), so(n), sp(n), e6, e7, e8, f4, g2} (2.69)
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2.3. Global Structure of 4d Gauge Theories

and so the semi-simple Lie algebras are then a direct sum of these. We refer to all the
choices of theories, i.e. the theory without a global structure, as Tg, that is, all theories
with Lie algebra g but without specifying the gauge group G. This is called a relative
field theory [23] 9.

The correlation functions of local operators of Tg(G) and Tg(G̃) are the same for M4 = R4,
as these depend only on the Lie algebra, and the correlation functions are also independent
of the possible defects [2]. However, for more topologically interesting M4, this might not
be the case. As we wish to consider general M4, we need to consider how the choices of
global structure determine the allowed defect charges, from which we can use Pontryagin
duality to determine the higher-form symmetry groups of the theory.

To do this, we follow the arguments of [2] which specialises to d = 4 gauge theories (usually
with a non-zero theta angle). First, let G̃ be the universal cover of some group G with Lie
algebra g, where we denote the center of G̃ as Z(G̃), such that G = G̃/Γ for Γ ⊆ Z(G̃).
Our Wilson operators must be labelled with a representation of G, such that they are
invariant under Γ. That is, given representations R of G such that ΓR = R [5], we have
that the Wilson lines of the theory are written as [13]

W(R)
q (γ1) = TrR Peiq

∫
γ1

A1 (2.70)

such that the trace over the representation R ensures gauge invariance of the Wilson line,
and P stands for path-ordering (which we won’t discuss). Then, we can use root and
weight lattices to consider what the possible spectrum of Wilson (and ’t Hooft lines) is
for the theory with global structure, as these correspond to the given representations and
charges under these representations, respectively.

Given weight lattice Λ of g, with G having a weight sublattice ΛG ⊂ Λ, the charges of the
Wilson operators then correspond to points of the lattice ΛG/W (g) where W is the Weyl
group of g, which is defined as [27]

W (g) = ⟨Sα⟩, Sα : h → h : h 7→ h− 2α · h
α · α

α (2.71)

where α is a root of g and h ⊂ g is the Cartan subalgebra, such that the Sα are reflections
in the hyperplane orthogonal to α.

We can consider also the charges of the ’t Hooft operators. To do this, we must introduce
the Langlands-dual (or GNO-dual) Lie algebra of g, which we refer to as g∗. To define
this, we label the set of roots of g as Φ(g), and the dual roots defined by [26]

Φ∨(g) = {α∨ = N−1 α

α · α
| α ∈ Φ(g)} (2.72)

9There seems to be some differing terminology in the literature around relative field theories. What
we are referring to as relative field theories here might be too lax for some people, who might instead refer
to this is a ’metatheory’, or even just ’a theory with no global structure’. Regardless, we will refer to these
theories as relative.
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2.3. Global Structure of 4d Gauge Theories

such that Φ(g∗) = Φ∨(g). In this definition, N is either a number or a diagonal matrix
depending on if g is simple or semi-simple, respectively. For example, if we have g is
simple, then N2 =

∑
i

1/(αi·αi)
r where r is the rank of g, and for the semi-simple case it

would be a diagonal matrix of such N for each term in the direct sum of g. Then, given
the corresponding weight lattice for g∗, call it Λ∗, we have that the ’t Hooft operators have
charges in Λ∗/W (g) as we have that W (g) = W (g∗) [2].

Dyonic operators have both electric and magnetic charge, and correspond to the lattice
(Λ × Λ∗)/W (g), which contains the electric and magnetic charges from before, as well as
the new dyonic charges [2]. Let’s refer to these charges as

(qe, qm) ∈ (Λ × Λ∗)/W (g) (2.73)

where specifying a global structure G picks which (qe, 0), qe ∈ ΛG/W (g), will be present
in our theory; we decide the allowed qe by picking all integers that are invariant under the
action of Γ, which defines our choice of G. If (qe, qm), (q′

e, q
′
m) are allowed charges in our

theory, then so is (qe + q′
e, qm + q′

m) and so the class of allowed charges are [(qe, qm)] ∈
Z(G̃)×Z(G̃), as identifying charges that can be obtained in this way corresponds to taking
the weight lattice modulo the root lattice, which gives the center of G̃ [2]. We can think of
this equivalence as screening the different operators to one another, such that they have
the same charge [10]. Note that G̃ and G̃∗ have the same center, where G̃∗ is the universal
cover of the Lie groups with Lie algebra g∗ [2].

The way in which we decide the remaining allowed charges, once we’ve picked G and thus
the allowed (qe, 0), comes from the dyonic version of the Dirac quantisation condition [2]

qeq
′
m − qmq

′
e = 0 mod N (2.74)

for Z(G) = ZN (which we will always assume to be the case in this thesis). Therefore,
if we have picked our G such that we know the allowed charge for the Wilson operators,
then we can use this condition to find all possible allowed charged operators.

Let’s consider the example g = su(2), which has Z(SU(2)) = Z2. Then, if we pick
G = G̃ = SU(2), we have Γ = {1}, i.e. the trivial group. Therefore, we have (1, 0) as an
allowed charge, and the Dirac quantization condition says

q′
m = 0 mod 2 (2.75)

which means that we would then have charges (n, 2n) mod 2 for n ∈ Z in this theory. This
essentially means we would just have the original (1, 0) charge. If instead we picked Γ = Z2,
then we haveG = SU(2)/Z2 = SO(3), and the only choice of (qe, 0) is qe = 0 mod 2. Then,
the Dirac quantisation condition says

qmq
′
e = 0 mod 2 (2.76)
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2.3. Global Structure of 4d Gauge Theories

Therefore, we could have either q′
e = 0 mod 2, qm = 1 mod 2, or we could have qm =

0 mod 2, q′
e = 1 mod 2, q′

m = 1 mod 2. These are two possible choices, both with gauge
group SO(3). We call the former SO(3)+, and it has charges (0, 1), i.e. just a ’t Hooft
operator. The latter we call SO(3)−, and it has a dyonic operator with charge (1, 1). So,
if we have Lie algebra su(2), we actually end up with 3 possible different global structures,
with the SO(3)± theories being related by a 2π shift in theta angle [2].

Let’s consider these charged defects of these three separate theories. For G = SU(2),
we have a Wilson line with Z2 electric charge; said differently, we have a Z(1)

2 electric
defect group. Considering the arguments of the previous subsection, concerning discrete
higher-form symmetries, if we have a Pontryagin dual group Z(1)

2 , then this implies we
have an ’electric’ symmetry group G(1) = (Z(1)

2 )e, where the ’e’ subscript denotes that this
is an electric symmetry. As this symmetry arises from the center of the gauge group, it
is sometimes called the center symmetry. Following this argument for the remaining
global structures, we have that G = SO(3)+ has a (Z(1)

2 )m ’magnetic’ 1-form symmetry,
and G = SO(3)− has what is called a ’dyonic’ 1-form symmetry (Z(1)

2 )d [10]. Dyonic
symmetries will often not be a focus for us, as they require introducing a theta angle,
which often we will not discuss.

Therefore, the ’theory’ Tsu(2) has defect group D = (Z(1)
2 )e × (Z(1)

2 )m × (Z(1)
2 )d, but

Tsu(2)(SU(2)) has only D = (Z(1)
2 )e etc. That is, the ’theory’ defined by only the Lie

algebra, which lacks global structure, sees all possible symmetries that could arise, but
fixing a global structure gives the explicit symmetries that arise in the theory globally.
An example of particular relevance is the standard model. Locally, the standard model
has the Lie algebra su(3) ⊕ su(2) ⊕ u(1)10, and it is usually given that the resulting stand-
ard model gauge group is G̃ = SU(3) × SU(2) × U(1), the universal cover. Picking this
global structure is of no importance to perturbative physics, yet if we wish to consider line
operators in the standard model, the analysis above has shown that we need to be more
careful. As discussed in [45], the centre of G̃ is Z6, and so the standard model group could
actually be any G = G̃/Γ, where Γ ∈ {1,Z2,Z3,Z6}, with a larger subgroup Γ resulting in
a richer magnetic line operator spectrum. It has been pointed out in [5] that the existence
of such magnetic line operators can give rise to hadrons and leptons with fractional charge.

10The Lie algebra u(1) is the trivial Lie algebra generated by the identity matrix.
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Chapter 3
Higher-Form Symmetries from

Geometric Engineering

In the previous section, we gave an introduction to both continuous and discrete higher-
form symmetries of both abelian and non-abelian QFTs, and showed how we can go
about constructing these symmetries from currents which we derived from the Lagrangian.
However, not all QFTs admit Lagrangians, and so we are unable to use these methods for
such non-Lagrangian theories. We might also consider the question of how to generalise
the idea of the global structure of 4d theories given in Section 2.3 to theories in a general
dimension. Both of these issues, and more, can be probed by considering QFTs that are
geometrically engineered from a string theory11. In Section 3.1, we will introduce some of
the main ideas of both branes and geometric engineering that we will require for Section
3.2, where we will show how we can analyse the higher-form symmetries that are present
in the geometrically engineered QFTs. In Section 3.3 we will show that the higher-form
symmetries that we capture in Section 3.2 are defined for theories of the form Tg, i.e.
lacking global structure, and we will show how considering flux non-commutativity allows
us to assign global structure to a theory, thus making a choice of which defects appear in
the theory.

3.1 Branes and Geometric Engineering

The first aim of this section is to briefly introduce the role of branes in string theories,
and how they couple to the p-forms of a given string theory. We assume a knowledge of
branes in bosonic string theory, and so all we wish to do in this section is to see how their
role generalises to p-form fields, instead of just for strings.

11We shall abuse language in this section and refer to M-theory as a string theory, even though it is
technically not.

28



3.1. Branes and Geometric Engineering

Before we discuss branes, we need to know the spectrum of p-forms present in a given string
theory. This can be calculated in a similar way to how one might go about calculating the
spectrum of fields for bosonic string theory, except one introduces supersymmetry to the
theory by adding a fermionic worldsheet also, such that the worldsheet action is invariant
under supersymmetry. Determining the boundary conditions of this fermionic worldsheet
corresponds to picking a different spectrum for the theory, and we give a very quick sketch
of how this works now, skipping over details and giving just the main ideas.

If we refer to the usual bosonic world sheet as Xµ, then introducing a fermionic world
sheet ψµ gives world-sheet action [9]

S = − 1
2π

∫
d2σ∂αX

µ∂αXµ + ψ̄µρα∂αψµ (3.1)

where ρα satisfy the 2x2 Clifford algebra. ψµ can be split up into it’s two components

ψµ =
[
ψµ

−

ψµ
+

]
(3.2)

and, for closed fermionic strings, which gives us the Type II theories, we have the following
boundary conditions which we can impose for both ψµ

+ and ψµ
− independently:

• Ramond (R): ψ±(σ + π) = ±ψ±(σ)

• Neveu-Schwarz (NS): ψ±(σ + π) = ∓ψ±(σ)

i.e. periodic or antiperiodic [9]. This means we have four sectors: R-R, R-NS, NS-R,
NS-NS. Each sector corresponds to strings with a choice of boundary condition for each
component, and from these we can learn the spectrum of allowed p-forms. The R-NS and
NS-R sectors give fermions, while the R-R and NS-NS sectors give us our bosonic p-forms,
and, from considering chirality of ground states, we get the following allowed p-form fields
from the R-R sector (the NS-NS sector is the same for the two Type II theories) [9]:

• IIA: C1, C3

• IIB: C0, C2, C4

where the field strength of the 4-form in IIB is self-dual, and both theories have d = 10.
The Type II theories also have a metric, scalar, and 2-form from the NS-NS sector, but
the branes we will consider, called Dp-branes for dimension p, couple to the R-R sector
forms [9] and so the other sectors won’t be relevant for us. We will be considering just the
Type II theories, so we won’t mention the spectra of the other three string theories (Type
I, E8 ×E8, SO(32)), but we would like to consider M-Theory also. We won’t explain why,
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3.1. Branes and Geometric Engineering

as this would take a lot of explanation that isn’t particularly relevant for us, but the only
bosonic forms that M-Theory has is the 3-form A3, and has d=11.

Now that we have the required bosonic spectra for the string theories we wish to consider,
we should introduce the corresponding branes for these theories. Consider the example of
Maxwell theory, where we measured the electric charge of Wilson lines by the integral

qe = 1
2π

∫
Σ2
F2 (3.3)

such that qe ∈ Z. We mentioned that the physical interpretation of a Wilson line was the
worldline of an infinitely massive electrically charged particle, such that the integral above
is actually measuring the electric charge of a point particle. If we also include ’t Hooft
lines, then the integral

qm = 1
2π

∫
Σ2

∗F2 (3.4)

would measure the associated magnetic charge also. If we considered this point particle
to be a 0-brane, then this means in d = 4 we have that a 0-brane ’couples’ to a 1-form A1

electrically, and to the 1-form Ã1 magnetically (where ∗F2 = dÃ1). We can generalise this
to higher-dimensional branes very analogously; if we measure the electric flux of a p-form
by the integral

e =
∫

Σp+1
Fp+1 (3.5)

and magnetic flux by
m =

∫
Σd−p−1

∗Fp+1 (3.6)

then this means we have an electric D(p−1)-brane and a magnetic dual D(d−p−3)-brane
[9]. We can see that this generalises the notion of the electric and magnetic flux of our
1-form gauge field in electromagnetism - if we set p = 1, d = 4, then we get an electric
0-brane and a magnetic 0-brane, i.e. point particles that give us Wilson and ’t Hooft lines.
Given the p-form spectra for the string theories we are interested in as above, we then
have the following Dp-branes (or M-Branes for M-theory), listed in electric-magnetic dual
pairs:

• IIA: (D0, D6), (D2, D4)

• IIB: (D(-1), D7), (D1, D5), (D3)

• M-Theory: (M2, M5)

where the IIB D3-brane is it’s own magnetic dual, arising from the self-duality of the field
strength of C4. The D(−1)-brane is called a ’D-Instanton’ as it is localised in time and
space [9]. The last thing we wish to mention about branes is that we can wrap branes
around k-cycles in our spacetime. Consider the example of the bosonic string on R25 ×S1.
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3.1. Branes and Geometric Engineering

The S1 of this spacetime is a 1-cycle, and we can have a string wrapped around this cycle.
The idea is the same for Dp-branes wrapping k-cycles - the brane itself can wrap around
non-trivial cycles of spacetime, and this is what we mean when we say a brane wraps a
k-cycle.

Now that we have discussed branes, we shall begin to discuss geometric engineering. There
is no real fixed definition of geometric engineering, rather it is a collection of tools and
ideas that one can use to study QFTs from string theories. To begin, let us say that we
have a d-dimensional string theory S defined on a spacetime MD ×Xd−D. The aim is to
define a D-dimensional QFT T on MD that is not a quantum gravity theory, i.e. we want
gravity to decouple. It is known from string compactifications that [10]

G ∼ 1
vol(Xd−D) (3.7)

where G is the gravitational strength, which is why, usually, we aim to have the extra
dimensions small such that the resulting theory is a quantum gravity theory12. As we
wish to study higher-form symmetries, which are global symmetries, this is not a good
sign. There is a no-go theorem that says all global symmetries of a theory of quantum
gravity should be gauged, and so if we want to discuss higher-form symmetries without
the requirement that we must gauge them then this would not be the appropriate context.
So, what we wish to do is to decouple gravity by having the extra dimensions be non-
compact, such that the volume is infinite. Then, our theory T is not a theory of quantum
gravity and we can then look for higher-form symmetries.

The things that define our theory T are then S, Xd−D, and the spacetime it exists on,
MD, and so we can think of a geometric engineering configuration as a dictionary [19]

SMD×Xd−D
→ Tg,MD

(S, Xd−D) (3.8)

from a string theory S to a QFT T , where Xd−D is non-compact. We will often just
refer to either side of the dictionary as S and Tg when it is clear what the configuration
is. We have that if S is a d = 10 string theory, e.g. Type II, then we require Xd−D to
be Calabi-Yau13, and we will always assume that MD is torsion-free, i.e. there are no
torsional cycles on MD.

Given an space Xd−D, we would like to know what the corresponding Tg is. All of our
examples will involve Xd−D being of the form Cn/Zm (or a product of this with a torus),
and thus we would like to know what Tg these can give. For C2/Γ, with finite Γ ⊂
SU(2), this falls under the McKay correspondence [34], with a table from [19] giving the
corresponding g for each choice of Γ. For our purposes, we only require that Γ = ZN

12As well as answering the question of ’if there are extra dimensions, why can we not see them?’
13For M-Theory, if one wishes to obtain a D = 4 theory then one can instead have X7 be a G2-manifold.

We won’t discuss these configurations here.
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3.2. Higher-form Symmetries from Geometric Engineering

results in g = su(N). Table 1 in [19] shows how other types of simple Lie algebras might
be obtained. A way of thinking about this is that the origin of the orbifold C2/Γ has
a singularity, and the QFT Tg ’lives’ at this origin, i.e. MD × {0} ∼= MD, which Tg is
defined on. One might remember from a bosonic string theory course that branes can give
rise to non-abelian gauge theories at the endpoints of strings. We can wrap branes around
compact cycles of the orbifold, and as these cycles reach the origin by ’slipping them down’
to the origin, they ’vanish’, giving us a non-abelian gauge theory at the origin where this
QFT lives, depending on the type of singularity, i.e. the choice of Γ [33]. This would then
give us a theory Tg defined on Md−4, which would be either a D = 7 or D = 6 theory
depending on if S was M-theory of a string theory. We can choose Xd−D = T 2 × C2/Γ
to obtain a theory Tg defined on MD for D = 5, 4 instead. The effect the T 2 has is on
the number of supercharges in the resulting SQFT. For instance, for X4 just the orbifold,
if we pick S = IIB, we get the D = 6 N =(2,0) theory from [47], but if S = IIA we get
a D = 6 N = (1, 1) theory. In both of these instances, picking instead X6 = T 2 × C2/Γ
results in an N = 4 SYM theory with the Lie algebra g corresponding to Γ as before [25].

Alternatively, we could consider choosing X6 = C3/Γ, for finite Γ ⊂ SU(3) instead, as
we have done for toric varieties in Section 1.3. In this case, there is not as concrete
a classification, but for the En theories in [37] there is a correspondence with the toric
diagrams of the associated X6, given that the toric diagram is of the form given by Figure
6 of [16]. An example we will consider later is the E0 theory, whose toric diagram was
given in Section 1.3.

3.2 Higher-form Symmetries from Geometric Engineering

We now move on to studying the higher-form symmetries of the theories we are engineering.
There exists a wonderful formula that allows us to extract the defect group of a theory Tg

just from the topological data of Xd−D in combination with the spectrum of branes of S
[18, 3, 19]

D =
⊕

n

D(n) =
⊕

n=p−k+1

Hk(Xd−D, ∂Xd−D)
Hk(Xd−D) (3.9)

where p labels the dimension of the p-branes of S that we choose to wrap over non-compact
k-cycles of Xd−D. This formula was first put forward, at least in this form, in [3] after the
ideas of [18], in the context of S being M-Theory, and considering only discrete higher-
form symmetries - which we can do by considering only TorHk(Xd−D,∂Xd−D)

Hk(Xd−D) . If we allow
ourselves to consider the non-torsional homology as well then we obtain continuous higher-
form symmetries, as is done in [19]. We also have from Equation 1.21 that if Hk(X6,Z) = 0

32



3.2. Higher-form Symmetries from Geometric Engineering

then we can write the defect group as

D(n) =
⊕

n=p−k+1
Hk−1(∂X6,Z) (3.10)

where k is the dimension of the non-compact cycles, and these (k−1)-cycles inHk−1(∂X6,Z)
that we are considering are the intersection of the non-compact cycles with the boundary
of X6, such that we obtain a compact (k − 1)-cycle on the boundary. We cannot do this
in all instances, but this greatly simplifies our calculations when we can.

This formula might seem quite miraculous at first, so we will now give some intuition as
to why this gives the defect group. We have already discussed in the previous subsection
that branes wrapping compact cycles that can then be ’slipped’ down to the origin give us
non-abelian gauge theories at the origin. So, the compact cycles should not be considered
in the above formula, hence why we quotient these out. From [33], we have that the mass
of the states corresponding to branes wrapping cycles is given by the volume of the cycle.
A physical way to think of this is to think of the energy that we require to wrap this brane
around such a cycle - if the cycle is bigger, we would need more energy to stretch this brane
around the cycle, and the state will thus have a greater mass. Thus, branes wrapping non-
compact cycles - whose volume is infinite - will thus give us infinitely massive states in
the theory at the origin. These correspond to our defects, which we said can be thought
of as the worldlines of infinitely massive particles. If our non-compact cycle cannot be
slipped down to the origin, then this means we cannot screen these defects to the identity
operator, and so these are the defects of the non-abelian gauge theory Tg (without global
structure). Thus, wrapping branes around compact cycles gives us a non-abelian QFT,
and wrapping around non-compact cycles gives us defects in the QFT.

We have seen that we can obtain the defect group for various higher-form symmetries
using Equation 3.9, but how do we see where these arise in the QFT? By considering
Equation 3.10, we know that the non-compact cycles that produce these symmetries will
actually be on MD × ∂Xd−D, and so by using the Künneth formula, as well as the fact
that for abelian groups G we have Hn(M) ⊗G = Hn(M,G) [3], we get

Hp(MD × ∂Xd−D) =
⊕

p=n+m

Hn(MD) ⊗Hm(∂Xd−D) =
⊕

p=n+m

Hn(MD, Gm) (3.11)

where Gm = Hm(∂Xd−D). Thus, the p-forms on MD ×∂Xd−D then correspond to n-forms
in the QFT on MD. These n-forms are the background gauge fields of the corresponding
(n−1)-form symmetries that we see in the defect group; we will discuss this in more detail
in Section 3.3.
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D = 5 E0 SCFT

The first example that we consider is the geometric engineering configuration

M-TheoryM5×X6 → TM5(M-Theory, X6) (3.12)

where X6 is now some (crepant resolution of) orbifold of the form C3/ZN , with ∂X6 =
S5/ZN . The example we would like to consider here is when N = 3, and the theory that
we obtain here is called the E0 theory, and was introduced in [37] as a non-trivial theory
with no symmetry at all, i.e. with trivial gauge group, and it is a non-Lagrangian SCFT.
We can compute, however, higher-form symmetries for this theory.

We get the following homology for the boundary by considering Equation 1.15 and the
cohomology given in [3]:

H•(S5/Z3) = {Z,Z3, 0,Z3, 0,Z} (3.13)

From Equation 1.44 we can see that we have Hk(X6) = 0 for k = 1, 3, 5, 6, and so we can
use Equation 1.20 to construct three short exact sequences, with Equation 1.21 in mind
to calculate the defect group:

0 → H6(X6) → H6(X6, ∂X6) → H5(∂X6) → 0 (3.14)

0 → H4(X6) → H4(X6, ∂X6) → H3(∂X6) → 0 (3.15)

0 → H2(X6) → H2(X6, ∂X6) → H1(∂X6) → 0 (3.16)

such that we have three equations of the form of Equation 1.21. In this example, we
will include non-torsional homology as well, to see how we obtain continuous higher-form
symmetries from geometric engineering also. This means that the top exact sequence is
of relevance to us (which it wouldn’t be if we were to consider just torsional homology).

As we have S = M-Theory, the values of p that we can consider are p = 2, 5, corresponding
to the M2, M5 branes, with the possibility of wrapping these around non-compact k =
2, 4, 6 cycles, such that we get, from Equation 3.10⊕

n

D(n) =
⊕

n=p−(k−1)
Hk−1(∂X6) (3.17)

=

 ⊕
n=2−(k−1)

Hk−1(∂X6)


M2

⊕  ⊕
n=5−(k−1)

Hk−1(∂X6)


M5

(3.18)

=
(
Z(1)

3 ⊕ Z(−1)
3 ⊕ Z(−3)

)
M2

⊕
(
Z(4)

3 ⊕ Z(2)
3 ⊕ Z(0)

)
M5

(3.19)

and so we have calculated the defect group for TM5(M-Theory,C3/Z3) ≡ TE0 . Again, in
the next section we will see that this is the defect group for the relative field theory - we
have not yet chosen a global structure.

34



3.2. Higher-form Symmetries from Geometric Engineering

Something intriguing here is the prediction of a discrete (-1)-form and a continuous (-
3)-form symmetry. These do not fit into the picture of everything we’ve discussed so
far in this thesis - what would these mean? The existence of the (-1)-form symmetry is
acknowledged in [3] and left for future analysis, but the (-3)-form continuous symmetry
does not appear as only discrete symmetries are considered. We would like to discuss both
of these now.

We have seen that a p-form symmetry is defined by a symmetry operator Ug(Σd−p−1) where
Σd−p−1 is a (d−p−1)-dimensional surface, that we can deform smoothly without changing
it’s action on charged defects. We usually associated to this action a constant shift of a
p-form in the theory. If we pick p = −1, then we see that we obtain a d-dimensional surface
Σd associated to the symmetry operator. This then means that Σd must be the whole
spacetime, which raises concerns as to how we can deform the surface without deforming
the whole spacetime. There is also the question of what does the symmetry act on; p-form
symmetries act on p-dimensional defects, so what (-1)-dimensional objects do we have?
At face value, this makes no sense, but if we consider a (-1)-dimensional object to be
something with a 0-dimensional worldline, then instantons would be the objects under
consideration. A detailed discussion of continuous (-1)-form symmetries can be found in
[4, 35], though discrete (-1)-form symmetries seem to be less discussed in the literature.

We then wish to discuss this supposed continuous (-3)-form symmetry. Following the
same argument as the (-1)-form symmetry, a (-3)-form symmetry would correspond to a
topological (d+2)-dimensional surface Σd+2. This is clearly not a sensible notion, at least
from the viewpoint of a d-dimensional QFT. Even if we considered a (-3)-dimensional
object by it’s worldline, as we did to make sense of the (-1)-form symmetry, we would
get a (-2)-dimensional worldline, which is again not sensible. The issue here is that this
symmetry arose from an M2 brane wrapping a non-compact 6-cycle. If we consider the
dimensionality of the M2 brane, then we can see that it makes sense for us to wrap the
M2 brane around the 2- and 4-cycles, but wrapping around the 6-cycle corresponds to
wrapping the brane around the entire X6 - this is what leads us to this erroneous (-
3)-form symmetry, as by dimensionality arguments we can see that this is not possible.
Therefore, in Equation 3.9, we must be careful in considering which values of p and k we
choose to sum over, i.e. we require n ≥ −1.

D = 6 N = (1, 1) and N = (2, 0) su(N) SCFTs

In this next example, we will geometrically engineer the defect group of the D = 6 N =
(2, 0) su(N) SCFT from [47], as well as it’s D = 6 N = (2, 0) su(N) cousin, where the
former is obtained from the geometric engineering configuration

IIBM6×X4 → Tsu(N)(IIB,X4) (3.20)
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3.2. Higher-form Symmetries from Geometric Engineering

where X4 = C2/ZN , and the latter is obtained by replacing IIB with IIA, as mentioned
earlier in this section. We have that

∂X4 = S3/ZN (3.21)

and the homology of X4, ∂X4 is [3]

H•(X4) = {Z, 0,ZN−1, 0, 0} (3.22)

H•(S3/ZN ) = {Z,ZN , 0,Z} (3.23)

We are abusing language by referring to X4 as C2/ZN - really we should be referring to it’s
resolution with a boundary S3/ZN at infinity. However, it is understood that this is what
we are referring to as X4. The fact that H2k+1(X4) = 0 means that we can use Equation
1.21 to simplify our calculations of the defect group. As usual, H0(X4, ∂X4) = 0, and so
this will not contribute to the defect group, but we get the following short exact sequences

0 → H4(X4, ∂X4) → H3(∂X4) → 0 (3.24)

0 → H3(X4, ∂X4) → 0 (3.25)

0 → H2(X4) → H2(X4, ∂X4) → H1(∂X4) → 0 (3.26)

0 → H1(X4, ∂X4) → H0(∂X4) → H0(X4) → 0 (3.27)

from which we can conclude directly

H4(X4, ∂X4) = Z (3.28)

such that we get
H4(X4, ∂X4)
H4(X4) = Z (3.29)

and we also have
H2(X4, ∂X4)
H2(X4) = ZN (3.30)

We can use the Ext functor to get H1(X4, ∂X4) in the following way: We have that
Ext(Z, H1(X4, ∂X4)) = 0 from Equation 1.23, and therefore

H0(∂X4) = Z ⊕H1(X4∂X4) 3.23= Z ⇒ H1(X4∂X4) = 0 (3.31)

so then
H1(X4, ∂X4)
H1(X4) = 0 (3.32)

We can also assume by considering the long exact sequence around the degree 3 relative
homology that H3(X4, ∂X4) = 0. Therefore, our defects will come from wrapping branes
around non-compact 2 and 4 cycles, giving discrete and continuous operators in D=6,
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3.2. Higher-form Symmetries from Geometric Engineering

respectively. For S = IIB, we then have the following defect group for the D=6 N = (2, 0)
su(N) theory

D =(Z(3) ⊕ Z(2)
N ⊕ Z(0))D3 ⊕ (Z(5) ⊕ Z(4)

N ⊕ Z(2))D5 (3.33)

⊕ (Z(1) ⊕ Z(0)
N )D1 (3.34)

⊕ (Z(−1))D(−1) ⊕ (Z(6)
N ⊕ Z(4))D7 (3.35)

For S = IIA, we get the defect group for the D=6 N = (1, 1) su(N) theory defect group

D =(Z(2) ⊕ Z(1)
N ⊕ Z(−1))D2 ⊕ (Z(4) ⊕ Z(3)

N ⊕ Z(1))D4 (3.36)

⊕ (Z(0) ⊕ Z(−1)
N )D0 ⊕ (Z(6) ⊕ Z(5)

N ⊕ Z(3))D6 (3.37)

D=4 N = 4 Super-Yang-Mills

The main purpose of this example is to illustrate the difficulties that arise when we cannot
use Equation 3.10, or when the long exact sequence in Equation 1.20 does not reduce to
short exact sequences that allow us to easily read off what the relative homology groups
are. We will consider S = IIA, such that d = 10, and we will pick D = 4, so we will be
considering the geometric engineering

IIAM4×X6 → TM4(IIA,X6) (3.38)

We wish to pick X6 such that we obtain a Super-Yang-Mills (SYM), in particular with a
g = su(N) Lie algebra. It can be shown that the correct geometry to pick is

X6 = T 2 × C2/ZN (3.39)

We can see that this geometry suggests we are going from IIA to the D = 6 N =
(1, 1) su(N) theory to the D=4 N = 4 su(N) SYM, but skipping the stop at the D = 6
theory.

We have that the boundary of this geometry is [19]

∂X6 = T 2 × S3/ZN (3.40)

and we have the homology of the torus is [40]

H•(T 2) = {Z,Z2,Z} (3.41)

and so using the Künneth formula we can obtain the homology as follows

Hk(T 2 × S3/ZN ) =
⊕

p+q=k

Hp(T 2) ⊗Hq(S3/ZN ) (3.42)
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3.2. Higher-form Symmetries from Geometric Engineering

such that we get [19] 14

H•(T 2 × S3/ZN ) = {Z,Z2 ⊕ ZN ,Z ⊕ ZN ⊕ ZN ,Z ⊕ ZN ,Z2,Z} (3.43)

We would like to compute

D =
⊕

n=p−k+1

Hk(T 2 × C2/ZN , T
2 × S3/ZN )

Hk(T 2 × C2/ZN ) (3.44)

but currently we only have the homology of ∂X6. From now on, we write X6 = T 2 ×X4,
where X4 = C2/ZN , and ∂X4 = S3/ZN as in the previous example.

If we have H2k+1(X6) = 0, as in the previous example, we can use Equation 3.10. However,
from the Künneth formula, we get

H•(X6) = H•(X4 × T 2) = {Z,Z2,ZN ,Z2N−2,ZN−1, 0, 0} (3.45)

which shows us that we cannot in general use Equation 3.10, though we can for non-
compact 6-cycles:

0 → H6(X6, ∂X6) → H5(∂X6) → 0 (3.46)

so therefore
H6(X6, ∂X6)
H6(X6) = Z (3.47)

This is the extent of what we can gain from the exact sequence in Equation 1.20, and we
can wrap our Dp branes of IIA around these non-compact cycles to compute a subgroup
of the total defect group from Equation 3.10. The question then remains: if we can’t use
Equation 3.10, how do we obtain the rest of the defect group? We have already considered
H•(X4, ∂X4) in the previous example - then, we can introduce a Künneth formula for
relative homology [29]

Hk(X × Y,A× Y ∪X ×B) =
⊕

k=p+q

(Hp(X,A) ⊗Hq(Y,B)) ⊕ Tor(Hp(X,A), Hq−1(Y,B))

(3.48)
If we then pick X = X4, Y = T 2, A = ∂X4, B = ∅, then we get

Hk(X6, ∂X6) =
⊕

k=p+q

Hp(X4, ∂X4) ⊗Hq(T 2) (3.49)

where we have used that Hq(T 2, ∅) = Hq(T 2), which follows naturally from the definition
of relative homology, as well as the fact that X × ∅ = ∅, and A × Y ∪ ∅ = A × Y . We
also have that as Hq(T 2) is always torsion-free, the Tor factor drops out for all k from
the properties of Tor given in Section 1.2. Now, to calculate H•(X6, ∂X6), we just need
to calculate H•(X4, ∂X4), which is something we considered in the previous example.

14The degree 2 and 3 homology groups here differ from those in [19] - we calculated an extra summand
of Z from the Künneth formula in both.
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3.3. Flux Non-Commutativity

For H2(X4, ∂X4), however, we have

Ext(H1(∂X4), H2(X4)) = Ext(ZN ,ZN−1) = ZN−1

NZN−1 = ZN (3.50)

so we see that the short exact sequence involving H2(X4, ∂X4) is not necessarily split. To
see what H2(X4, ∂X4) is, let’s consider the conditions on H2(X6, ∂X6):

H2(X6, ∂X6) =
⊕

p+q=2
Hp(X4, ∂X4) ⊗Hq(T 2) (3.51)

= H2(X4, ∂X4) ⊗ Z (3.52)

= H2(X4, ∂X4) (3.53)

i.e. these groups are the same. If we consider the long exact sequence

· · · → H2(X6) → H2(X6, ∂X6) → H1(∂X6) → H1(X6) → . . . (3.54)

then we see that the torsional elements in H1(∂X6) get mapped to zero in H1(X6), and so
when considering just torsional elements we have that this sequence terminates, and thus

Tor
H2(X6, ∂X6)
H2(X6) = ZN (3.55)

This is what is done in [19], but we cannot use the methods introduced in this thesis to
get any further: clearly if we assume that Equation 3.26 splits, i.e. if we pick the zero
element of Ext(H1(∂X4), H2(X6)), then we would have that

H2(X6, ∂X6)
H2(X6) = H2(X4, ∂X4)

H2(X6) = ZN−1 ⊕ ZN

ZN
(3.56)

which is not a sensible quotient. Therefore, we see that there is greater difficulty in using
the long exact sequence from Equation 1.20 when we do not have the condition that
H2k+1(X6) = 0 as in the previous two examples. There are other methods we could use
to continue this example, but the purpose of this example is more to demonstrate that a
variety of techniques in toric geometry, homological algebra, and algebraic topology are
sometimes required for more complicated geometric engineering setups.

3.3 Flux Non-Commutativity

In Section 2.3 we introduced the notion of a relative field theory and the concept of global
structure, and how choosing a global structure chooses the spectrum of defects in the
theory. The defect groups we obtained in the previous section were in fact the defect
group for the relative field theory T , and so again we must choose a global structure. This
again corresponds to picking only a subgroup of the total defect group, and so we would
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3.3. Flux Non-Commutativity

like to see how we go about picking this global structure from the geometric engineering
perspective. This is the aim of this subsection.

Let’s suppose that we have obtained a defect group containing the following type of defects

D = (Z(p))e ⊕ (Z(q))m (3.57)

where (Z(p))e is a Z-valued p-form symmetry obtained from an ’electric’ brane, and (Zq)m

is a q-form symmetry obtained from the magnetically dual brane. Schematically we can
then write the electric and magnetic fluxes associated to these symmetries as follows∫

Σp+1
Fp+1,

∫
Σq+1

F̃q+1 ∈ Z (3.58)

where we are integrating over the field strengths of the p− and q-form symmetries that
these correspond to. This is just an analogue of the Dirac quantisation condition. It is these
field strengths that appear on MD from Equation 3.11, i.e. Fp+1 ∈ Hp+1(MD), F̃q+1 ∈
Hq+1(MD). As these fluxes arise from forms on the boundary of the non-compact X6, we
need to specify boundary conditions for them. Usually, we would just make the natural
choice and pick Dirichlet boundary conditions, i.e. have that on the boundary at infinity
these forms go to zero. If this were possible, then we would be able to say that our theory
has the defect group given as above when we choose a global structure. However, this is
not always possible. Let’s create unitary flux operators, as is done in [25]

ΦF = e
i
∫

Σp+1
Fp+1

, Φ
F̃

= e
i
∫

Σq+1
F̃q+1 (3.59)

We will treat these operators as acting on states defined on the Hilbert space H(MD ×
∂Xd−D), and of interest to us is whether we can simultaneously set boundary conditions
for the fluxes corresponding to these operators. These ideas were put forth in a more
abstract sense in [21], and were considered in for IIB fluxes in [25] and subsequent papers
in various contexts such as [3]. We follow the arguments of the latter, with the intention
of making it clear how this relates to a restriction of the defect group.

Suppose we have a state |0⟩ ∈ H(MD × ∂Xd−D) such that we have

ΦF |0⟩ = |0⟩ (3.60)

then this would mean that, for this state |0⟩, ΦF acts as the identity operator, 1. Then,

ΦF = e
i
∫

Σp+1
Fp+1 = 1 ⇒ Fp+1 = 0 (3.61)

i.e. by picking such a state |0⟩ we are essentially setting Dirichlet boundary conditions for
Fp+1 on the boundary. By acting with ⟨0| on Equation 3.60, we can thus say that

⟨ΦF ⟩ = 1 ↔ Dirichlet boundary for Fp+1 (3.62)
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3.3. Flux Non-Commutativity

Now consider the case that

ΦF ΦF̃ = e2πiL(F,F̃ )ΦF̃ ΦF (3.63)

i.e. that these two operators do not commute, and their failure to commute is captured
by some function L(F, F̃ ). Then,

⟨0| ΦF ΦF̃ |0⟩ = e2πiL(F,F̃ ) ⟨0| ΦF̃ ΦF |0⟩ (3.64)

= e2πiL(F,F̃ ) ⟨0| ΦF̃ |0⟩ (3.65)

= e2πiL(F,F̃ )⟨ΦF̃ ⟩ (3.66)

such that we have
⟨ΦF̃ ⟩ = e−2πiL(F,F̃ ) ⟨0| ΦF ΦF̃ |0⟩ (3.67)

Therefore, if we let
ΦF̃ |0⟩ = e2πiL(F,F̃ ) |0⟩ (3.68)

then we obtain
⟨ΦF̃ ⟩ = 1 ⇐⇒ L(F, F̃ ) = 0 (3.69)

i.e. we can only give Dirichlet boundary conditions to both Fp+1, F̃q+1 if these flux oper-
ators commute. We then pick a state |0;L⟩ such that all F ∈ L have

⟨ΦF ⟩ = 1 (3.70)

i.e. we give Dirichlet boundary conditions to all F ∈ L, and we choose L such that this is a
maximal set of fluxes15. Doing this then means that the p-form symmetry corresponding to
an Fp+1 ∈ L is then ’turned off’, i.e. we pick a subset of the defect group corresponding to
fluxes for all F̃ /∈ L. This is because if a flux F ∈ L is zero on the boundary, then it would
not contribute to Equation 3.10, and thus we can see that picking boundary conditions
corresponds to defining what is called a polarization, i.e. a choice of subgroup of the
total defect group D. This then takes us from a relative field theory TMD

(S, X6) to a
quantum field theory with global structure TMD

(S, X6, L).

We can consider the 5d E0 theory as an example. The torsional fluxes in 5d we obtain for
this theory come from TorH4(MD × ∂Xd−D), T orH7(MD × ∂Xd−D) [3], and we can use
Equation 3.11 to confirm the defect group obtained in Equation 3.19

TorH4(M5 × ∂X6) =
⊕

n+m=4
Hn(M5) ⊗ TorHm(S5/Z3) (3.71)

= (H0(M5) ⊗ Z3) ⊕ (H2(M5) ⊗ Z3) (3.72)

= H0(M5,Z3)︸ ︷︷ ︸
Z(−1)

3

⊕H2(M5,Z3)︸ ︷︷ ︸
Z(1)

3

(3.73)

15Picking L in such a way corresponds to picking a representation of a Heisenberg algebra, generated
by the flux operators - see [21, 38] for more details.
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3.3. Flux Non-Commutativity

and

TorH7(M5 × ∂X6) =
⊕

n+m=7
Hn(M5) ⊗ TorHm(S5/Z3) (3.74)

= (H3(M5) ⊗ Z3) ⊕ (H5(M5) ⊗ Z3) (3.75)

= H3(M5,Z3)︸ ︷︷ ︸
Z(2)

3

⊕H5(M5,Z3)︸ ︷︷ ︸
Z(4)

3

(3.76)

so we see that we recover the field strengths corresponding to all of the discrete higher-
form symmetries in the defect group. Let’s pick F2 ∈ H2(M5,Z3), and F̃3 ∈ H3(M5,Z3).
The corresponding flux operators are then

ΦF = e
i
∫

Σ2
F2
, ΦF̃ = e

i
∫

Σ3
F̃3 (3.77)

Then, in a very schematic way we can see that these don’t commute, by considering
an analogy with the non-commutativity of the defects of BF theory, particularly from
Equation 2.68:

ΦF ΦF̃ = e
i
∫

Σ2
F2
e

i
∫

Σ3
F̃3 (3.78)

= e
i
∫

∂Σ2=γ1
A1
e

i
∫

∂Σ3=γ2
B2 (3.79)

∼ D(A)
1 (γ1)D(B)

1 (γ2) (3.80)

= e
2πiLink(γ2,γ1)

3 D(B)
1 (γ2)D(A)

1 (γ1) (3.81)

∼ e
2πiLink(Σ3,Σ2)

3 ΦF̃ ΦF (3.82)

If we write the Linking number as an intersection number, as in Equation 2.11, we get the
following expression:

ΦF ΦF̃ = e
2πi

3

∫
M5

F2∧F̃3ΦF̃ ΦF (3.83)

which matches the form given in [3].

Therefore we have that in the 5d E0 theory we need to pick a polarisation of the defect
group due to the non-commutativity of the fluxes. This gives an alternative way of con-
sidering the global structures of QFTs to [2] that allows us to consider the defect groups
of theories in dimensions other than d = 4. Interestingly, the E0 theory was defined to
have no gauge group, yet we still had to pick a global structure for the theory. This per-
haps shows that having a global gauge group is not the defining feature of having global
structure.
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Chapter 4
Anomalies and Global Structures

In this chapter, we would like to illustrate some of the properties and uses of anomalies,
particularly with reference to ’bulk-boundary’ systems, which we will introduce later on in
the chapter. Anomalies are usually associated to the failure of a symmetry to hold under
certain changes to the system, e.g. when quantizing the classical theory. In this chapter,
we will focus on ’t Hooft anomalies - the failure of gauging a global symmetry. We
will also see how these bulk-boundary systems allow us to glean insight into the origin of
global structures of theories.

4.1 SPT Phases

Suppose we have some higher-form symmetry G(p) of a theory T , with a correspond-
ing ’magnetic dual’ symmetry G(d−p−2). The presence of a mixed ’t Hooft anomaly is
detected by introducing background gauge fields for both of the two symmetries simul-
taneously, call them Bp+1, Bd−p−1. These are non-dynamical gauge fields, that transform
as Bp+1 → Bp+1 + dλp for λp a G(p) symmetry parameter, similar for Bd−p−1. Consider
the effect of a gauge transformation of one of these fields on the path integral of T

Z[Bp+1 + dλp, Bd−p−1] = e
i
∫

Md
AZ[Bp+1, Bd−p−1] (4.1)

We call A the anomalous phase, and this phase is how we detect a mixed ’t Hooft
anomaly [13]. This anomalous phase is often in the form of a Lagrangian for a TQFT,
and shows us that we cannot gauge both symmetries at the same time. While anomalies
do not necessarily indicate that our theory is somehow bad, we would like to see how we
can obtain a theory free of anomalies.

We can write the anomalous phase A as a d-dimensional form

A ≡ A[λp, B
(m)
d−p−1] (4.2)
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Something we can do to cancel this anomaly is to define the Symmetry Protected
Topological (SPT) phase Â as follows [13]

Â[Bp+1 + dλp, Bd−p−1] = Â[Bp+1, Bd−p−1] + dA[λp, Bd−p−1] (4.3)

Notice that the SPT phase is a (d+1)-form functional of our background gauge fields, such
that it’s transformation under the gauge symmetry is a total derivative of the anomalous
phase. For us to introduce this SPT phase to our theory, we must then define a (d + 1)-
dimensional manifold to integrate this form over. There is a natural choice here, namely
a manifold Nd+1 such that ∂Nd+1 = Md

16. We can then introduce an anomaly-free path
integral in the following way

Ẑ[Bp+1, Bd−p−1] = e
−i

∫
Nd+1

Â
Z[Bp+1, Bd−p−1] (4.4)

Then, we have that

Ẑ[Bλ
p+1, Bd−p−1] = e

−i
∫

Nd+1
Â[Bλ

p+1,]
Z[Bλ

p+1, ] (4.5)

= e
−i

∫
Nd+1

Â[Bp+1,]+dA
e

i
∫

Md
AZ[Bp+1, ] (4.6)

= e
−i

∫
Nd+1

Â[Bp+1,]
e

−i
∫

∂Nd+1=Md
A
e

i
∫

Md
A Z[Bp+1, ] (4.7)

= e
−i

∫
Nd+1

Â[Bp+1,]
Z[Bp+1, ] (4.8)

= Ẑ[Bp+1, Bd−p−1] (4.9)

where Bλ
p+1 = Bp+1 + dλp, and we’ve omitted Bd−p−1 in our working for brevity. We

can thus see that including this SPT phase in the path integral of a theory T gives us an
anomaly-free theory T̂ . This tells us that the anomaly is a manifestation of a boundary
term of a theory in one dimension higher that we are neglecting to consider. Taking this
higher dimensional TQFT into account, we are capturing the full system and thus have
no anomaly. The SPT in this case is then sometimes referred to as the anomaly theory
corresponding to our theory T . There is a common picture for this system, sometimes
known as a bulk-boundary system [10]

16This idea leads naturally to the study of bordisms, the Atiyah-Segal axioms, and relative field theories
- see [36] for a concise introduction to this picture.
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Nd+1

Â

Md = ∂Nd+1

T

Attach Â to T−−−−−−−−−→

Nd+1

Â

T̂

Anomalous theory T and SPT Â Anomaly-free T̂

This process is referred to as stacking SPT phases. We note here that ∂Md = ∂2Nd+1 =
0, and so this is only possible in cases where our spacetime Md has no boundary.

It will be illustrative to see some examples. We will consider both the 4d Maxwell theory,
and BF theory in general dimension.

Maxwell Theory

Usually when we have a global symmetry, we try to see if we can turn this into a gauge
symmetry by letting our symmetry depend on spacetime. We will see what happens when
we do this for our electric and magnetic 1-form symmetry. As with gauging a 0-form
symmetry by introducing a 1-form gauge field, to gauge a 1-form symmetry we introduce
a 2-form background gauge field with transformation [10]

B
(e)
2 → B

(e)
2 + dλ1 (4.10)

B
(m)
2 → B

(m)
2 + dλ̃1 (4.11)

such that now our 1-forms can depend on spacetime, and thus their derivative no longer
vanishes in general. In the action, we can couple these 2-form gauge fields to the corres-
ponding current of the global symmetry [10]

S =
∫
F2 ∧ ∗F2 +B

(e)
2 ∧ ∗F2 +B

(m)
2 ∧ F2 (4.12)

First, let’s remove the magnetic 2-form for now and see how the action responds to the
electric 2-form gauge transformations, bearing in mind that F2 → F2 + dλ1 now:

S →S +
∫
dλ1 ∧ ∗F2 + dλ1 ∧ ∗F2 (4.13)

= S − 2
∫
λ1 ∧ d ∗ F2 (4.14)

= S (4.15)

45



as the equations of motion in the presence of this 2-form field are

d ∗ F2 = 0, dF2 = −dB(e)
2 (4.16)

and so this means this gauge transformation is a symmetry. We can clearly do the same
thing for the magnetic 2-form gauge field as well. This means that the theory is free
of Pure ’t Hooft Anomalies, i.e. the action is invariant under the gauging of each
symmetry individually. However, if we turn on both 2-forms at the same time, and do a
gauge transformation of just the electric 2-form, [13]

S =
∫
F2 ∧ ∗F2 +B

(e)
2 ∧ ∗F2 +B

(m)
2 ∧ F2 (4.17)

(e)→ S +
∫
dλ1 ∧ ∗F2 + dλ1 ∧ ∗F2 +B

(m)
2 ∧ dλ1 (4.18)

= S −
∫

2λ1 ∧ d ∗ F2 + dB
(m)
2 ∧ λ1 (4.19)

= S −
∫

2λ1 ∧ (−dB(m)
2 ) + dB

(m)
2 ∧ λ1 (4.20)

= S +
∫
dB

(m)
2 ∧ λ1 (4.21)

where in Equation 4.20 we used that the equations of motion with both 2-forms turned
on are

d ∗ F2 = −dB(m)
2 , dF2 = −dB(e)

2 (4.22)

So, we see that we cannot gauge both of these symmetries at once, and this leads to a
mixed ’t Hooft anomaly. So one can see that if we insist that F2 is self-dual, i.e. ∗F2 = F2,
then we have instead that G(1) = U(1), and there would no longer be any mixed ’t Hooft
anomaly upon gauging.

Let’s phrase this in terms of the path integral [10]

Z[B(e)
2 + dλ1, B

(m)
2 ] = ei

∫
dB

(m)
2 ∧λ1Z[B(e)

2 , B
(m)
2 ] (4.23)

such that we have obtained our anomalous phase

A = dB
(m)
2 ∧ λ1 (4.24)

By following the argument above, this then means we can find the SPT for this anomaly
by considering Equation 4.3

dA = dB
(m)
2 ∧ dλ1 (4.25)

such that
Â[B(e)

2 + dλ1, B
(m)
2 ] = Â[B(e)

2 , B
(m)
2 ] + dB

(m)
2 ∧ dλ1 (4.26)

which gives us that
Â[B(e)

2 , B
(m)
2 ] = dB

(m)
2 ∧B

(e)
2 (4.27)
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Therefore, to achieve an anomaly-free theory for 4d Maxwell, we can consider the following
path integral:

Ẑ[B(e)
2 , B

(m)
2 ] = e

−i
∫

N5
B

(e)
2 ∧dB

(m)
2 Z[B(e)

2 , B
(m)
2 ] (4.28)

Something worth mentioning is that this phase is of the form of a BF theory with N = 1,
which will become relevant later on.

BF Theory

For BF theory, we have a Z(p)
N × Z(d−p−1)

N global symmetry, and we wish to gauge this to
find an ’t Hooft anomaly. Note that these symmetries are not electromagnetically dual.
To do this, we introduce a pair of background gauge fields Cp+1, C̃d−p such that

Cp+1 → Cp+1 + dλp (4.29)

C̃d−p → C̃d−p + dλ̃d−p−1 (4.30)

and couple these to the ’currents’ of the symmetry [13]

S = iN

2π

∫
Md

Bd−p−1 ∧ dAp −Bd−p−1 ∧ Cp+1 − C̃d−p ∧Ap (4.31)

The equations of motion with these gauge fields included are modified:

dAp = −C̃d−p (4.32)

dBd−p−1 = −Cp+1 (4.33)

which we can then use to see that dCp+1 = 0 and dC̃d−p = 0.

Then, we can see there is a mixed ’t Hooft anomaly between these gauge symmetries, by
considering a Z(p)

N gauge transformation:

δS = iN

2π

∫
Bd−p−1 ∧ dλp −Bd−p−1 ∧ dλp − C̃d−p ∧ λp (4.34)

= −iN
2π

∫
C̃d−p ∧ λp (4.35)

such that we get an anomalous phase

A[λp, C̃d−p] = −iN
2π C̃d−p ∧ λp (4.36)

Then, we can derive the SPT phase for this anomaly in the same way as before:

dA = −iN
2π C̃d−p ∧ dλp (4.37)

such that
Â[Cp+1, C̃d−p] = −iN

2π C̃d−p ∧ Cp+1 (4.38)

and therefore our anomaly-free theory is

Ẑ[Cp+1, C̃d−p] = e
iN
2π

∫
Nd+1

C̃d−p∧Cp+1Z[Cp+1, C̃d−p] (4.39)
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Gauged Theories

We can see from both of our examples, as well as by considering the definition in Equation
4.3, that our SPT phases also have an ’anomaly’ from the total derivative that we use to
cancel the anomaly of our QFT. Suppose we had an SPT phase defined on some Nd+1

such that ∂Nd+1 = 0. Then we would have [10]∫
Nd+1

dA[λp, Bd−p−1] =
∫

∂Nd+1=0
A[λp, Bd−p−1] = 0 (4.40)

Therefore, we can only cancel anomalies using SPT phases defined on manifolds with
boundary. By considering the bulk-boundary picture from above, this makes intuitive
sense - if the SPT has no boundary then there is nowhere for us to attach the theory T
to achieve the anomaly-free theory.

If we have a introduced background gauge field Bp+1 for a symmetry G(p) of a theory T
such that we have no ’t Hooft anomaly, then we can turn this background gauge field into
a dynamical gauge field in the following way [10]

ZT /G(p) =
∫

[dBp+1]ZT [Bp+1] (4.41)

for continuous G(p), or
ZT /G(p) =

∑
[Bp+1]

ZT [Bp+1] (4.42)

for discrete G(p), where [Bp+1] is the equivalence class of Bp+1 up to gauge transformations.
We have seen this notation for discrete symmetries in Section 2.2 when we considered BF
theory. Once we have gauged a background field Bp+1, we then write it in lower case,
bp+1 to easily distinguish between background gauge fields and dynamical gauge fields.
We then refer to T /G(p) as the gauged theory [10], and this notation arises from the
fact that gauging a symmetry identifies distinct physical states connected by the global
symmetry, so it is almost as if the gauge theory is T modulo this symmetry.

4.2 Anomalies of Non-Abelian Gauge Theories

As well as considering the anomalies of higher-form symmetries in abelian gauge theories as
we have done so far, we would also like to understand anomalies of non-abelian gauge the-
ories. We explored the relationship between higher-form symmetries and global structures
of 4d non-abelian gauge theories in Section 2.3 through the perspective of representation
theory, as well as in higher dimensions in Section 3 by using geometric engineering config-
urations. We now intend to study the relationship between anomalies and global structure
through obstructions to lifting G-bundles to G̃-bundles, where G is the global structure of
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our theory, and G̃ is the universal cover of G. We considered the example of G̃ = SU(2)
and G = SO(3) in Section 2.3, and found that there were two different SO(3) theories,
admitting ’t Hooft lines and dyonic lines respectively, but to obtain these two different
theories from the methods in this section we would have to introduce discrete theta angles,
which we will not cover here.

Let’s remind ourselves of the main takeaways of Section 2.3. Suppose we have a non-
abelian relative gauge theory Tg such that the simply-connected group G̃ corresponding
to g has center Z(G̃). Then a theory with global structure Tg(G̃) will have an electric
symmetry G(1) = Z(G̃) [10, 13]. Alternatively, we could pick global structure G=G̃/Γ
where Γ ⊆ Z(G̃), and we have that Tg(G) has electric symmetry G(1) = Z(G̃)/Γ = Z(G)
and magnetic symmetry G(d−3) = Γ̂ [10]. It is mentioned in [13] that this magnetic
symmetry of Tg(G) is classified by the fundamental group π1(G), but we won’t usually
refer to the magnetic symmetry in this way.

Before we can discuss the relationship between global structures on non-abelian gauge
theories and anomalies, we need to give a gentle introduction to what we mean by G-
bundles. In the mathematical literature, one would call a Principal G-bundle the pairing
P = (M,G) where M is a smooth manifold and G a Lie group, such that the bundle is a
fiber bundle with fibre F the same as the structure group G [40]. Those unfamiliar with
fibre bundles need not worry, as we don’t intend to give much more explanation that this
from a mathematical viewpoint. From our physics perspective, we can consider a G-bundle
in the following sense: let M be our spacetime, and G the gauge group that the gauge
field(s) of our theory transform under to give a gauge-invariant theory. For example, our
4d Maxwell theory example can be considered a U(1)-bundle, where A1 transforms under
U(1) such that the action is gauge invariant. Our field A1 is actually valued in U(1) [40],
and so we write the path integral in the following way

Z =
∫

[dA1]eiS[A1] (4.43)

where the integral over A1 is integrating over U(1)-valued fields. If we were to have a
different G-bundle, we would be considering a similar integral, just over G instead of
U(1).

Then consider the scenario of a G-bundle such that G ⊂ G̃ where these are both non-
abelian Lie groups of a Lie algebra g, such that G = G̃/Γ as above. In our theory of the
G-bundle, our gauge field is G-valued, e.g. locally A1 = Aa

1T
a where T a are generators of

g such that the global gauge group is G17. For those with knowledge of fibre bundles, this
means the transition functions between different patches of M are group elements g ∈ G

17Note that locally the gauge field is independent of the global gauge group, or global structure, as was
discussed in Section 2.3. This is because A1 is a connection, not a 1-form, and is thus only defined locally
(in a given patch).
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such that the A1 written above in one patch is then given in another patch as [40]

A1 → g−1A1g + g−1dg (4.44)

which is just the general form of a gauge transformation of A1. We would then like to know
what stops us from simply summing over all of G̃, and picking the gauge transformation
above to also include those additional Γ elements in G̃. This is measured by the Γ-valued
2-form w2, called the Stiefel-Whitney Class18, and is an obstruction to lifting a
G-bundle to a G̃-bundle. What we mean by this is that if the class [w2] ̸= 0, then the
theory will not be invariant under G̃-valued gauge transformation, or said differently, if
dw2 = 0 then we cannot lift from a G-bundle to a G̃-bundle. A nice explanation of
why the obstruction specifically takes the form of a 2-form can be found in [10], but we
won’t repeat it here. Additionally, physics-friendly explanations of fibre bundles, principal
bundles, frame bundles, čech cohomology, and Stiefel-Whitney classes (including exactly
how these classes obstruct the lifting of the bundle) can all be found in [40],

We can actually see where the 1-form center symmetry arises by considering this gauge
transformation above, by letting g, g−1 ∈ Z(G), such that these g commute with A1, and
letting g = 1 + α0 + ... such that

A1 → A1 + dα0 (4.45)

as usual for an abelian gauge transformation. Then, as we would for Maxwell theory, we
can see that

F2 = dA1 → d(A1 + λ1) = F2 (4.46)

for λ1 a constant Z(G)-valued 1-form, such that the field strength invariance implies a
global G(1) = Z(G) symmetry. This is why the electric 1-form symmetry is sometimes
referred to as the center symmetry - the symmetry arises from the commutativity of the
center of the gauge group.

For a theory T (G), we have a Stiefel-Whitney class w2 that obstructs us from lifting from
a G-bundle to a G̃-bundle, and if we have introduced a background gauge field B2 for a
global symmetry G(1), then we are attempting to ’divide’ out the G(1) factor of the theory
by identifying states connected by a symmetry, and so instead of having a G-bundle, we
will instead have a G/G(1)-bundle, i.e. we only sum over G/G(1)-valued dynamical gauge
fields in the path integral, instead of G-valued gauge fields. This then means that by
turning on a background field Be

2, we are essentially turning on another Stiefel-Whitney
class that obstructs us from lifting the G/G(1)-bundle to a G-bundle. If we introduce a
magnetic dual background gauge field Bm

d−2 for G(d−3), then we introduce a coupling to
18Some authors will only refer to w2 as the Stiefel-Whitney class if the groups under consideration are

G̃ = Spin(N), G = SO(N).
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the action of the form [10]
2π

∫
Bm

d−2 ∧ w2 (4.47)

We have seen previously that the way we introduce a background gauge field to the
theory is by coupling it to the current corresponding to the symmetry. We have already
considered that T (G̃) has only an electric 1-form symmetry, with no magnetic (d−3)-form
symmetry. When we consider instead the theory with global structure T (G = G̃/Γ), we
are introducing the magnetic (d − 3)-form symmetry at the expense of having a reduced
gauge group, where we then obtain the Stiefel-Whitney class w2 that obstructs us from
lifting back to the T (G̃) theory with no magnetic symmetry. Therefore, we can consider
the Stiefel-Whitney class w2 to be the conserved current for this symmetry, as it is non-zero
iff we have a the (d− 3)-form symmetry in our theory.

We can see that under gauge transformation, this coupling is not necessarily gauge invari-
ant

→ 2π
∫
dλd−3 ∧ w2 = 2π

∫
λd−3 ∧ dw2 (4.48)

and so our theory will have an anomaly if dw2 ̸= 0. Currently, it does not appear that
this is a mixed ’t Hooft anomaly, but rather a pure ’t Hooft anomaly. We would like to
consider now how we can determine if this Stiefel-Whitney class is closed, and we will see
that this anomaly is in fact a mixed ’t Hooft anomaly if w2 is not closed.

Let us assume that we have turned on both Bm
d−2 and Be

2. Then the bundles we are
summing over are G/G(1), with the following obstructions to each lift

G̃

G = G̃/Γ

w2 (Γ-valued)

G/G(1)

Be
2 (G(1)-valued)

One might come to the conclusion that the obstruction of a lift from G/G(1) directly to
G̃ is then just some W2 = w2 + Be

2, but w2 is Γ-valued and Be
2 is G(1)-valued, and we do

not necessarily have that Γ = G(1), and even if we do have this condition, we are lifting
from G/G(1) = (G̃/Γ)/G(1) ≡ G̃/χ to G̃, where χ ⊆ Z(G̃) [10], and so we must be more
careful about the obstruction W2, which will be χ-valued. From the quotient that defined
χ, we can see that

G(1) = χ/Γ (4.49)

and so we have the following short exact sequence

0 → Γ i→ χ
π→ G(1) → 0 (4.50)
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where i : Γ → χ is the inclusion map, and π : χ → G(1) is the homomorphism that just
sends Γ elements to the identity in G(1), and is thus surjective [10]. Therefore, we can use
these maps to write W2 in terms of w2 and Be

2 such that W2 is χ-valued [10]

W2 = i(w2) + B̃e
2 (4.51)

where π(B̃e
2) = Be

2.

For us to have an obstruction to lifting from the G/G(1)-bundle directly to the G̃-bundle,
we require dW2 = 0, and so we assume that this is the case. This then means that

dW2 = 0 = i(dw2) + dB̃e
2 (4.52)

We are beginning to see the appearance of the dependence of the gauge invariance of the
magnetic coupling on the electric background field. We could stop here and leave the
anomalous phase in terms of B̃e

2, but we don’t know all that much about when B̃e
2 is

closed, so we will discuss this now.

As we have mentioned, B̃e
2 is a lift of G(1)-valued Be

2 to a χ-valued field. We know that
dBe

2 = 0, as it is the obstruction to lifting G/G(1)-bundles to G-bundles, but this does not
necessarily mean that B̃e

2 is closed. From the short exact sequence above, we can write
the following long exact sequence of cohomology groups [10]

· · · → Hp(M,Γ) i→ Hp(M,χ) π→ Hp(M,G(1)) β→ Hp+1(M,Γ) → . . . (4.53)

where β : Hp(M,G(1)) → Hp+1(M,Γ) is called the Bockstein Homomorphism. This
map is analogous to mapping a field to it’s field strength; for a ZN -valued p-form wp, the
Bockstein homomorphism acts as [13]

β(wp) = 1
N
dŵp mod N (4.54)

where ŵp is the ’integral lift’ of wp, i.e. the inclusion of the ZN -valued
∫
wp within the

integers:
∫
ŵp ∈ Z. This way of considering the field strength of discrete gauge fields is

what one would do when not using the fact that the path integral of BF theory only sums
over ZN gauge fields instead of all the U(1) gauge fields considered in the action, as we did
in Section 2.2. In [13], the approach we took in Section 2.2 is called a ZN ⊂ U(1) gauge
theory; if we wanted to consider purely ZN gauge theories, the Bockstein homomorphism
is what we would use to define field strengths.

Having introduced the Bockstein homomorphism, we can see that Be
2 ∈ H2(M,G(1)), and

that to map this field to dB̃e
2 ∈ H3(M,χ), we can just follow the maps along the exact

sequence to H3(M,χ), such that we get [10]

dB̃e
2 = i(β(Be

2)) (4.55)
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Thus, we can finally write, using Equation 4.52

i(dw2) = −i(β(Be
2)) (4.56)

and therefore
dw2 = −β(Be

2) (4.57)

so therefore our anomalous phase from the magnetic coupling is

A[Be
2, λd−3] = −λd−3 ∧ β(Be

2) (4.58)

such that, when β(Be
2) ̸= 0, we have a mixed ’t Hooft anomaly between Bm

d−2 and Be
2.

So when does β(Be
2) = 0? Well, if the short exact sequence in Equation 4.50 splits, i.e.

χ = Γ ⊕G(1), then we have that β(Be
2) = 0 and we have no anomaly [10]. We can see this

by considering the long exact sequence above by writing the cohomology groups explicitly
in terms of their coefficients

· · · → Γbp i→ χbp = Γbp ⊕ (G(1))bp π→ (G(1))bp
β→ . . . (4.59)

and the fact that this sequence is exact means we have that Imπ = Kerβ. We can see
that Imπ = (G(1))bp = Kerβ which thus means, as Be

2 ∈ H2(M,G(1)), that β(Be
2) = 0 if

the sequence in Equation 4.50 splits, i.e. if Ext(G(1),Γ) = 0.

Now suppose that the sequence doesn’t split such that we have anomalous phase A as
given above. Then the corresponding anomaly theory is

Â[Be
2, B

m
d−2] = −Bm

d−2 ∧ β(Be
2) (4.60)

From this, we can see that the choice of global structure of a non-abelian gauge theory is
connected deeply to the presence of mixed ’t Hooft anomalies. There is a similar story for
Higher-Group Symmetries, but we won’t cover these in this thesis.

The Standard Model

For the Standard Model gauge group, G̃ = SU(3)×SU(2)×U(1), we have that Z(G̃) = Z6,
and so we have that the possible subgroups Γ are 1,Z2,Z3,Z6. This then means that for
different choices of Γ such that G = G̃/Γ we have that the electric and magnetic 1-form
symmetries are

Γ G(1) G(d−3)

1 Z6 1
Z2 Z3 Z2

Z3 Z2 Z3

Z6 1 Z6
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The corresponding exact sequences to Equation 4.50 are

0 → 0 → χ → Z6 → 0 (4.61)

0 → Z2 → χ → Z3 → 0 (4.62)

0 → Z3 → χ → Z2 → 0 (4.63)

0 → Z6 → χ → 0 → 0 (4.64)

For the first and last of these, we have that χ = Z6 and the sequences are thus split, and
so in these theories there is only one of these background fields to turn on due to only
having one symmetry, and thus no mixed ’t Hooft anomaly. In principle, we could then go
ahead and sum over this discrete background gauge field in the path integral, and have a
dynamical 2-form gauge field in the Standard Model. For the second and third sequence,
we need to be more careful. If Ext(G(1),Γ) = 0, then we have that the sequence splits
and there is no mixed ’t Hooft anomaly. Using Equation 1.22 we have

Ext(Zm,Zn) = Zn

mZn
(4.65)

where we are interested in calculating this for m = 2, 3, n = 3, 2. Considering the first
example, we have

2Z3 = 2{0, 1, 2} mod 3 (4.66)

= {0, 2, 4} mod 3 (4.67)

= {0, 2, 1} mod 3 (4.68)

= Z3 (4.69)

so therefore Ext(Z2,Z3) = 0, and we can similarly show that Ext(Z3,Z2) = 0, so therefore
both of these sequences also split, giving no mixed ’t Hooft anomaly. In these two cases,
we could have a pair of dynamical 2-form discrete gauge fields in the Standard Model by
gauging both of these symmetries.

Anomalies of G̃=Spin(6)

Perhaps the simplest G̃ that leads to an ’t Hooft anomaly is G̃ =Spin(6)=SU(4), which
has Z(G̃) = Z6, and if we pick Γ = Z2, such that G = SO(6), then we have G(d−3) = Z2,
and G(1) = Z4/Z2 = Z2 [10]. Then, putting these into the short exact sequence, we get
[10]

0 → Z2 → Z4 → Z2 → 0 (4.70)

where the Z4 in the middle corresponds to the obstruction to lifting from the gauged
theory PSO(6)=SO(6)/Z2 to Spin(6). If this short exact sequence splits then we have no
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’t Hooft anomaly. To check this, we calculate the following

Ext(Z2,Z2) = Z2
2Z2

= Z2 (4.71)

as clearly NZN = 0. Therefore, this sequence does not always split; in fact, Z2 ⊕ Z2 is
isomorphic to the Klein 4-group, not Z4 [42] - thus we have a mixed ’t Hooft anomaly
between the pair of electric and magnetic background fields. This means we cannot sum
over these fields to make them dynamical.

4.3 Symmetry TFTs

The content of this subsection ties together nearly everything we have discussed in this
thesis, by introducing the Symmetry TFT, or SymTFT for short. This is very much a
gentle introduction to SymTFTs, and is more of a ’teaser trailer’ for how the ideas we
have discussed in this thesis are united in the study of SymTFTs. It is another form
of bulk-boundary system, but this time with two boundaries - one on either side of the
bulk. The original idea of the SymTFT was proposed in [22], and given it’s name in [7],
a paper of the supervisor of this thesis. In [7], the SymTFT of a theory T is constructed
by considering the geometric engineering of the theory, but only on the boundary of the
geometry Xd−D - that is, we have the geometric engineering configurations

SMD×Xd−D
→ Tg,MD

(4.72)

SMD×∂Xd−D
→ SymTFTD+1 (4.73)

Deriving the SymTFT in this way requires introducing differential cohomology, and we
would not have enough space to include a sufficient explanation of this here. An overview
of differential cohomology for the SymTFT is given in [7], and more comprehensive intro-
ductions can be found in [8, 31, 15]. We can, however, still study the SymTFT without
discussing it’s stringy origin, and thus without needing differential cohomology. We use
[42, 10] to do this.

Suppose we have a theory T with a collection of discrete higher-form symmetries H =
ΠiG

(pi) such that there is a mixed ’t Hooft anomaly between them when we introduce
background fields Bpi+1. Then, we can stack an SPT phase Â to the theory, to obtain our
anomaly-free theory T̂ . Now that the theory is anomaly-free, we can go ahead and gauge
these background fields

Bpi+1 → bpi+1 (4.74)

such that the bpi+1 are now dynamical gauge fields in the (d+ 1, d) bulk-boundary theory
T̂ , which we cannot do for T due to the ’t Hooft anomaly. We have that the (d + 1)-
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dimensional action of the SymTFT is then [42, 10]

ξ =
∫

Nd+1
Â[bp1+1, ..., bpn+1] +

n∑
i=1

ni

2π

∫
bpi+1 ∧ dad−pi−1 (4.75)

where the ad−pi−1 are dynamical Ĝ(pi)-valued gauge fields in the SymTFT, which are
the gauge fields of the dual G(d−pi−2) symmetry [42]. The ni are the order of G(pi), e.g.
G(pi) = Zni . This action is composed of the anomaly theory Â for our theory T̂ , and a
BF theory - this is the case for higher-form symmetries, but may be different for different
kinds of generalised symmetry. Our theory then has two kinds of defects [10, 19]

Db
i (Σpi+1) = e

iq
∫

Σpi+1
bpi+1

(4.76)

Da
i (Σd−pi−1) = e

iq̃
∫

Σd−pi−1
ad−pi−1

(4.77)

where Σpi+1,Σd−pi−1 are submanifolds within the SymTFT, and q ∈ Ĝ(pi), q̃ ∈ ̂̂G(pi) =
G(pi).

Currently, we have not specified how the SymTFT is a bulk-boundary system - it turns
out that the SymTFT actually has two boundaries. We have that one boundary is the
original theory T , a relative theory with defect group D such that not all defects in D
are present in a theory with global structure, T (G). This is referred to as the physical,
or relative, boundary condition Bphys [42, 10, 19]. The other boundary, called the
symmetry boundary condition Bsym is a choice of either Dirichlet or Neumann bound-
ary conditions (b.c.) for each gauge field in the theory [42]. Then, we can say that the
(d+ 1)-dimensional manifold Nd+1 that the SymTFT is defined on is [19]

Nd+1 = Md × [−ϵ, 0] (4.78)

such that
∂Nd+1 = Md × {−ϵ} ⊔ Md × {0} (4.79)

where the former boundary is where Bsym lives and the latter is where T lives. We can
picture this as follows [22, 42, 10]

Bsym Bphys

SymTFT ξ
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with the symmetry boundary conditions on one side of the SymTFT ξ and the d-dimensional
T living on the other. As the SymTFT is appropriately named, i.e. it is a topological
theory, we can deform it such that we bring the two boundaries together, i.e. send ϵ → 0.
such that we impose the symmetry boundary conditions on the theory T - this then pro-
duces some theory T̃ which, depending on the choice of symmetry boundary conditions,
can just be the theory T̂ , or a gauged theory T /H̃ for H̃ ⊆ H:

ϵ

ϵ→0−−→ T̃

This picture is often referred to as the sandwich construction19. We may sometimes
refer to this informally as a squish, for which we apologise.

Suppose we pick our Bsym to be Dirichlet b.c. for our bpi+1, such that on the symmetry
boundary they take their original background field value Bpi+1, i.e. fixed, non-dynamical
fields, and Neumann boundary conditions for the ad−pi−1 fields such that dad−pi−1 = 0
on the symmetry boundary. Then, when we squish the boundaries together the BF terms
of the SymTFT action will vanish, leaving just the original theory T̂ , i.e. only the SPT
phase will remain, with the gauge fields ’ungauged’ back to their background fields [10].
One can think of the SymTFT with such a choice of background fields as opening up the
theory to see it’s component parts.

We have that the choice of Bsym determines what the resulting theory is after we bring
the boundaries together. The way this happens is due to where the defects live in the
SymTFT. If we pick Dirichlet boundary conditions for some defect Di, this means that it
is a trivial operator on Bsym, and so we should have that it ends on Bsym - we can then
let the defect end also on Bphys. If we pick Neumann b.c. for another defect Dj , then this
defect survives in Bsym, so we can have this defect ’terminate’ in Bsym, i.e. it forms a loop
in the boundary. We have the following picture for this [10, 42]

19There are extensions of the sandwich construction, such as the ’quiche’ [22], and ’club sandwich’ [11].
See reference 33 of [30] for a greatly anticipated addition to this collection.
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Di

Dj

where we can thus see that the defects with Neumann b.c. can link those with Dirichlet b.c.
such that, if Di is G-valued and Dj is Ĝ-valued, then these two defects do not commute,
i.e. the Dj is the symmetry operator of the defect Di - we saw this ’non-commutativity’ of
discrete operators both in Equation 2.68 and in Section 3.3. Now, when we squish the two
boundaries together, the (pi + 1)-dimensional defect Di becomes a pi-dimensional defect
in T̃ , as it is now in the d-dimensional theory instead of the (d+ 1)-dimensional bulk, and
likewise Dj becomes the pj-dimensional symmetry operator that measures the charge of
this defect20.

Now suppose that for H = G(p1) × G(p2) we have an ’t Hooft anomaly between the two
symmetries, such that Â[bp1+1, bp2+1] is present in the SymTFT action. Let’s consider
the anomaly of BF theory, i.e. we have the anomaly theory given in Equation 4.38, with
p1 = p, p2 = d− p− 1. Then, we have that the equations of motion for the SymTFT are

dad−p−1 = c̃d−p, dãp = cp+1 (4.80)

We can see that picking Bsym consistently with these equations means we are only left with
Neumann for a, ã, and Dirichlet for c, c̃, which just gives back the anomaly theory after
the squish. We cannot pick Neumann conditions for both c, c̃, which essentially means
we must ’ungauge’ the two fields that exhibit the anomaly - the SymTFT is telling us
through it’s equations of motion that there is a mixed ’t Hooft anomaly between c and c̃!
Therefore, anomalies are detected by the SymTFT as an obstruction to picking Bsym in a
way which would leave anomalous fields gauged.

Alternatively, consider having H = G(p) such that Â = 0. Then, the action of the SymTFT
would just be as in Equation 4.75 without the anomaly theory term. Then, the equations
of motion would be

dad−p−1 = 0 (4.81)

We can see that there is no obstruction to setting any boundary conditions here, and can
pick Neumann for the bp+1 field and Dirichlet for the ad−p−1 field. Then, we are choosing

20For simplicity, in this thesis we have always assumed that a p-dim symmetry operator acts on a p-dim
defect, and so following our conventions we would require that pi = pj here. However, it is possible to
have pj ≤ pi [10].
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to leave the bp+1 field gauged in the resulting d-dim theory, such that T̃ = T /G(p) [10]. We
also have that the G(d−p−2) = Ĝ(p)-valued field ad−p−1 becomes a defect Da in the gauged
theory, with symmetry operator Db measuring it’s charge - we have a global G(d−p−2)

symmetry instead in T̃ [10]. This is exactly what was happening in Section 4.2 - consider
our example of the Standard Model: if we have Γ = 1, i.e. we sum over G̃-bundles, then we
have global electric 1-form symmetry G(1) = Z6. If we then gauge this theory such that we
sum over G̃/G(1)-bundles, giving Γ = Z6, then we obtain a global G(d−3) = Ẑ6 = Z6 dual
symmetry in the gauged theory. Essentially, we are seeing that choices of global structure
for the relative theory T correspond to choices of Bsym in the SymTFT.

The SymTFT is clearly a very powerful theory that encapsulates within one paradigm
many of the ideas that we have introduced throughout this thesis. If one were to geo-
metrically engineer a relative theory as mentioned at the start of this section, they could
also engineer the SymTFT from the boundary geometry - this would allow us study the
allowed discrete symmetries, anomalies, and global structures of the theory, all in one
simple object. We add that we have discussed only SymTFTs for discrete higher-form
symmetries, but the case of continuous higher-form symmetries have been discussed in [6],
and non-invertible symmetries in [12].
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Chapter 5
Conclusion

In this thesis, we have introduced continuous and discrete higher-form symmetries as a
generalisation of our ordinary notion of symmetry, and have seen the different ways in
which this allows us to study QFTs beyond what we could do before. The study of higher-
form symmetries puts defects in the driver seat for studying QFTs, and these defects
have been ubiquitous in our thesis. Something particularly exciting about the importance
of electric and magnetic defects when studying higher-form symmetries is that magnetic
monopoles would be an example of such a magnetic line defect - a so-far unobserved
particle of this kind taking such a prominent role in the study of QFTs with higher-form
symmetries is an incredibly exciting prospect, especially with experiments getting closer
to detecting these elusive particles [1].

We have also considered global structures of QFTs using both representation theory in
Section 2, flux non-commutativity of geometric engineering configurations in Section 3,
and through anomalies and the SymTFT in Section 4. This idea is something that a
physicist using perturbation theory would not come across, nor expect. It is only until
one considers these non-perturbative phenomena, the defects, that one is confronted with
the issue. Higher-form symmetries have been pivotal, through their correspondence with
defects, in studying QFTs in this way. Perhaps most importantly, recognising that the
Standard Model is yet to have it’s global structure experimentally verified would just
be a technical issue until one begins to consider the higher-form symmetries and the
corresponding defects. We also saw the connection between anomalies of higher-form
symmetries and the restrictions these impose on the global structure.

The SymTFT allowed us to really bring together all of the topics we studied into one
unifying object. Though we only gave a brief look at the power of the SymTFT, it is an
object that is rapidly developing at the time of writing, with many gaps in the literature.
This made it a particularly exciting closing topic for this thesis, and we look forward to
seeing how the SymTFT, and higher-form symmetries in general, progress into the future.
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